Displaying publications 41 - 60 of 121 in total

Abstract:
Sort:
  1. Alias R, Mahmoodian R, Genasan K, Vellasamy KM, Hamdi Abd Shukor M, Kamarul T
    Mater Sci Eng C Mater Biol Appl, 2020 Feb;107:110304.
    PMID: 31761210 DOI: 10.1016/j.msec.2019.110304
    Surgical site infection associated with surgical instruments has always been a factor in delaying post-operative recovery of patients. The evolution in surface modification of surgical instruments can be a potential choice to overcome the nosocomial infection mainly caused by bacterial populations such as Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. A study was, therefore, conducted characterising the morphology, hydrophobicity, adhesion strength, phase, Nano-hardness, surface chemistry, antimicrobial and biocompatibility of SS 316L steel deposited with a Nano-composite layer of Silver (Ag) and Tantalum oxide (Ta2O5) using physical vapour deposition magnetron sputtering. The adhesion strength of Ag/AgTa2O5 coating on SS 316L and treated at 250-850 °C of thermal treatment was evaluated using micro-scratch. The Ag/Ag-Ta2O5-400 °C was shown a 154% improvement in adhesion strength on SS 316L when compared with as-sputtered layer or Ag/Ag-Ta2O5-250, 550, 700 and 850 °C. The FESEM, XPS, and XRD indicated the segregation of Ag on the surface of SS 316L after the crystallization. Wettability and Nano-indentation tests demonstrated an increase in hydrophobicity (77.3 ± 0.3°) and Nano-hardness (1.12 ± 0.43 GPa) when compared with as-sputtered layer, after the 400 °C of thermal treatment. The antibacterial performance on Ag/Ag-Ta2O5-400 °C indicated a significant zone of inhibition to Staphylococcus aureus (A-axis: 16.33 ± 0.58 mm; B-axis: 25.67 ± 0.58 mm, p 
  2. Jamlus SA, Jauhari I, Khalid HM
    Mater Sci Eng C Mater Biol Appl, 2014 Oct;43:566-72.
    PMID: 25175251 DOI: 10.1016/j.msec.2014.06.034
    In this study, HA is superplastically embedded into Titanium substrate and the sample is subsequently deformed superplastically until 70% deformation degree. The former process is termed as superplastic embedment (SPE) while the later as superplastic deformation (SPD). After the SPE, HA is successfully embedded into the substrate, forming a layer with a thickness of about 249 nm. After the SPD the embedded HA layer thickness decreases to 111 nm. The SPD sample is then immersed in simulated body fluid (SBF) to evaluate its biological properties. A newly grown apatite is formed as a result of the immersion and the HA layer thickness increases with immersion time. The cohesion and adhesion strength within the HA coating and coating-substrate interface of the SPD samples before and after immersion in the SBF is evaluated through the nanoscratch test technique. The results indicate that the HA layer after SPD is still strong even though after being exposed in SBF environment for quite some time. The study suggests that the superplastically embedded HA nanolayer is still intact mechanically and functioning appropriately as biological activity base even after the SPD process.
  3. Dayaghi E, Bakhsheshi-Rad HR, Hamzah E, Akhavan-Farid A, Ismail AF, Aziz M, et al.
    Mater Sci Eng C Mater Biol Appl, 2019 Sep;102:53-65.
    PMID: 31147024 DOI: 10.1016/j.msec.2019.04.010
    Recently, porous magnesium and its alloys are receiving great consideration as biocompatible and biodegradable scaffolds for bone tissue engineering application. However, they presented poor antibacterial performance and corrosion resistance which limited their clinical applications. In this study, Mg-Zn (MZ) scaffold containing different concentrations of tetracycline (MZ-xTC, x = 1, 5 and 10%) were fabricated by space holder technique to meet the desirable antibacterial activity and corrosion resistance properties. The MZ-TC contains total porosity of 63-65% with pore sizes in the range of 600-800 μm in order to accommodate bone cells. The MZ scaffold presented higher compressive strength and corrosion resistance compared to pure Mg scaffold. However, tetracycline incorporation has less significant effect on the mechanical and corrosion properties of the scaffolds. Moreover, MZ-xTC scaffolds drug release profiles show an initial immediate release which is followed by more stable release patterns. The bioactivity test reveals that the MZ-xTC scaffolds are capable of developing the formation of HA layers in simulated body fluid (SBF). Next, Staphylococcus aureus and Escherichia coli bacteria were utilized to assess the antimicrobial activity of the MZ-xTC scaffolds. The findings indicate that those scaffolds that incorporate a high level concentration of tetracycline are tougher against bacterial organization than MZ scaffolds. However, the MTT assay demonstrates that the MZ scaffolds containing 1 to 5% tetracycline are more effective to sustain cell viability, whereas MZ-10TC shows some toxicity. The alkaline phosphatase (ALP) activity of the MZ-(1-5)TC was considerably higher than that of MZ-10TC on the 3 and 7 days, implying higher osteoblastic differentiation. All the findings suggest that the MZ-xTC scaffolds containing 1 to 5% tetracycline is a promising candidate for bone tissue healing due to excellent antibacterial activity and biocompatibility.
  4. Pourshahrestani S, Zeimaran E, Djordjevic I, Kadri NA, Towler MR
    Mater Sci Eng C Mater Biol Appl, 2016 Jan 1;58:1255-68.
    PMID: 26478429 DOI: 10.1016/j.msec.2015.09.008
    Hemorrhage is the most common cause of death both in hospitals and on the battlefield. The need for an effective hemostatic agent remains, since all injuries are not amenable to tourniquet use. There are many topical hemostatic agents and dressings available to control severe bleeding. This article reviews the most commonly used inorganic hemostats, subcategorized as zeolite and clay-based hemostats. Their hemostatic functions as well as their structural properties that are believed to induce hemostasis are discussed. The most important findings from in vitro and in vivo experiments are also covered.
  5. Tariq U, Hussain R, Tufail K, Haider Z, Tariq R, Ali J
    Mater Sci Eng C Mater Biol Appl, 2019 Oct;103:109863.
    PMID: 31349467 DOI: 10.1016/j.msec.2019.109863
    Quick setting and poor injectability due to liquid-solid phase separation have limited the clinical use of brushite and monetite cements. The presence of certain ions in the cement during the setting reaction moderate the setting time and properties of the cement. This study reports the preparation of injectable bone cement by using biphasic calcium phosphate (BCP) extracted from femur lamb bone by calcination at 1450 °C. EDX analysis infers the presence of Mg and Na ions as trace elements in BCP. X-ray diffraction patterns of the prepared cement confirmed the formation of brushite (DCPD) along with monetite (DCPA) as a minor phase. DCPA phase diminished gradually with a decrease in powder to liquid ratio (PLR). Initial and final setting time of 5.3 ± 0.5 and 14.67 ± 0.5 min respectively are obtained and within the acceptable recommended range for orthopedic applications. Exceptional injectability of ≈90% is achieved for all prepared bone cement samples. A decrease in compressive strength was observed with increase in the liquid phase of the cement, which is attributed to the higher degree of porosity in the set cement. Immersion of bone cement in simulated body fluid (SBF) for up to 7 days resulted in the formation of apatite layer on the surface of cement with Ca/P ratio 1.71, which enhanced the compressive strength from 2.88 to 9.15 MPa. The results demonstrate that bone cement produced from BCP extracted from femur lamb bone can be considered as potential bone substitute for regeneration and repair of bone defects.
  6. Zakaria MY, Sulong AB, Muhamad N, Raza MR, Ramli MI
    Mater Sci Eng C Mater Biol Appl, 2019 Apr;97:884-895.
    PMID: 30678979 DOI: 10.1016/j.msec.2018.12.056
    Titanium-ceramic composites are potential implant material candidates because of their unique mechanical properties and biocompatibility. This review focused on the latest advancement in processing of titanium-ceramic materials. Previously, titanium-ceramic incorporated using different coating techniques, i.e., plasma spraying and electrophoretic depositions, to enhance the biocompatibility of the implants. A major drawback in these coating methods is the growth of tissue at only the surface of the composite and might peel off over time. Recently, metal-ceramic composite was introduced via powder metallurgy method such as powder injection moulding. A porous structure can be obtained via powder metallurgy. Producing a porous titanium-ceramic structure would improve the mechanical properties, biocompatibility and tissue growth within the structure. Hence, further research needed to be done by considering the potential of powder injection moulding method which offer lower costs and more complex shapes for future implant.
  7. Mohd Bakhori SK, Mahmud S, Ling CA, Sirelkhatim AH, Hasan H, Mohamad D, et al.
    Mater Sci Eng C Mater Biol Appl, 2017 Sep 01;78:868-877.
    PMID: 28576061 DOI: 10.1016/j.msec.2017.04.085
    ZnO with two different morphologies were used to study the inhibition of Streptococcus sobrinus and Streptococcus mutans which are closely associated with tooth cavity. Rod-like shaped ZnO-A and plate-like shaped ZnO-B were produced using a zinc boiling furnace. The nanopowders were characterized using energy filtered transmission electron microscopy (EFTEM), X-ray diffraction (XRD), photoluminescence (PL) spectroscopy, Raman spectroscopy and dynamic light scattering (DLS) to confirm the properties of the ZnO polycrystalline wurtzite structures. XRD results show that the calculated crystallite sizes of ZnO-A and ZnO-B were 36.6 and 39.4nm, respectively, whereas DLS revealed particle size distributions of 21.82nm (ZnO-A) and 52.21nm (ZnO-B). PL spectra showed ion vacancy defects related to green and red luminescence for both ZnO particles. These defects evolved during the generation of reactive oxygen species which contributed to the antibacterial activity. Antibacterial activity was investigated using microdilution technique towards S. sobrinus and S. mutans at different nanopowder concentrations. Results showed that ZnO-A exhibited higher inhibition on both bacteria compared with ZnO-B. Moreover, S. mutans was more sensitive compared with S. sobrinus because of its higher inhibition rate.
  8. Choudhary R, Vecstaudza J, Krishnamurithy G, Raghavendran HRB, Murali MR, Kamarul T, et al.
    Mater Sci Eng C Mater Biol Appl, 2016 Nov 01;68:89-100.
    PMID: 27524000 DOI: 10.1016/j.msec.2016.04.110
    Diopside was synthesized from biowaste (Eggshell) by sol-gel combustion method at low calcination temperature and the influence of two different fuels (urea, l-alanine) on the phase formation temperature, physical and biological properties of the resultant diopside was studied. The synthesized materials were characterized by heating microscopy, FTIR, XRD, BET, SEM and EDAX techniques. BET analysis reveals particles were of submicron size with porosity in the nanometer range. Bone-like apatite deposition ability of diopside scaffolds was examined under static and circulation mode of SBF (Simulated Body Fluid). It was noticed that diopside has the capability to deposit HAP (hydroxyapatite) within the early stages of immersion. ICP-OES analysis indicates release of Ca, Mg, Si ions and removal of P ions from the SBF, but in different quantities from diopside scaffolds. Cytocompatability studies on human bone marrow stromal cells (hBMSCs) revealed good cellular attachment on the surface of diopside scaffolds and formation of extracellular matrix (ECM). This study suggests that the usage of eggshell biowaste as calcium source provides an effective substitute for synthetic starting materials to fabricate bioproducts for biomedical applications.
  9. Lim SS, Chai CY, Loh HS
    Mater Sci Eng C Mater Biol Appl, 2017 Jul 01;76:144-152.
    PMID: 28482510 DOI: 10.1016/j.msec.2017.03.075
    Hydrothermally synthesized TiO2nanotubes (TNTs) were first used as a filler for chitosan scaffold for reinforcement purpose. Chitosan-TNTs (CTNTs) scaffolds prepared via direct blending and freeze drying retained cylindrical structure and showed enhanced compressive modulus and reduced degradation rate compared to chitosan membrane which experienced severe shrinkage after rehydration with ethanol. Macroporous interconnectivity with pore size of 70-230μm and porosity of 88% were found in CTNTs scaffolds. Subsequently, the functionalization of CTNTs scaffolds with CaCl2solutions (0.5mM-40.5mM) was conducted at physiological pH. The adsorption isotherm of Ca2+ions onto CTNTs scaffolds fitted well with Freundlich isotherm. CTNTs scaffolds with Ca2+ions showed high biocompatibility by promoting adhesion, proliferation and early differentiation of MG63 in a non-dose dependent manner. CTNTs scaffolds with Ca2+ions can be an alternative for bone regeneration.
  10. Nasiri R, Hamzehalipour Almaki J, Idris AB, Abdul Majid FA, Nasiri M, Salouti M, et al.
    Mater Sci Eng C Mater Biol Appl, 2016 Dec 01;69:1147-58.
    PMID: 27612812 DOI: 10.1016/j.msec.2016.07.076
    Engineering of a physiologically compatible, stable and targetable SPIONs-CA-FA formulation was reported. Initially fabricated superparamagnetic iron oxide nanoparticles (SPIONs) were coated with citric acid (CA) to hamper agglomeration as well as to ameliorate biocompatibility. Folic acid (FA) as a targeting agent was then conjugated to the citric acid coated SPIONs (SPIONs-CA) for targeting the specific receptors expressed on the FAR+ cancer cells. Physiochemical characterizations were then performed to assure required properties like stability, size, phase purity, surface morphology, chemical integrity and magnetic properties. In vitro evaluations (MTT assay) were performed on HeLa, HSF 1184, MDA-MB-468 and MDA-MB-231cell lines to ensure the biocompatibility of SPIONs-CA-FA. There were no morphological changes and lysis in contact with erythrocytes recorded for SPIONs-CA-FA and SPIONs-CA. High level of SPIONs-CA-FA binding to FAR+ cell lines was assured via qualitative and quantitative in vitro binding studies. Hence, SPIONs-CA-FA was introduced as a promising tool for biomedical applications like magnetic hyperthermia and drug delivery. The in vitro findings presented in this study need to be compared with those of in vivo studies.
  11. Miyazaki T, Akaike J, Kawashita M, Lim HN
    PMID: 30889741 DOI: 10.1016/j.msec.2019.01.091
    Nanocomposites of magnetite (Fe3O4) and reduced graphene oxide (rGO) generate heat under an alternating magnetic field and therefore have potential applications as thermoseeds for cancer hyperthermia treatment. However, the properties of such nanocomposites as biomaterials have not been sufficiently well characterized. In this study, the osteoconductivity of Fe3O4-rGO nanocomposites of various compositions was evaluated in vitro in terms of their apatite-forming ability in simulated body fluid (SBF). Furthermore, the heat generation of the nanocomposites was measured under an alternating magnetic field. The apatite-forming ability in SBF improved as the Fe3O4 content in the nanocomposite was increased. As the Fe3O4 content was increased, the nanocomposite not only rapidly raised the surrounding temperature to approximately 100 °C, but the specific absorption rate also increased. We assumed that the ionic interaction between the Fe3O4 and rGO was enhanced and that Brown relaxation was suppressed as the proportion of rGO in the nanocomposite was increased. Consequently, a high content of Fe3O4 in the nanocomposite was effective for improving both the osteoconductivity and heat generation characteristics for hyperthermia applications.
  12. Ulum MF, Arafat A, Noviana D, Yusop AH, Nasution AK, Abdul Kadir MR, et al.
    Mater Sci Eng C Mater Biol Appl, 2014 Mar 1;36:336-44.
    PMID: 24433920 DOI: 10.1016/j.msec.2013.12.022
    Biodegradable metals such as magnesium, iron and their alloys have been known as potential materials for temporary medical implants. However, most of the studies on biodegradable metals have been focusing on optimizing their mechanical properties and degradation behavior with no emphasis on improving their bioactivity behavior. We therefore investigated the possibility of improving iron biodegradation rate and bioactivity by incorporating various bioactive bioceramics. The iron-based bioceramic (hydroxyapatite, tricalcium phosphate and biphasic calcium phosphate) composites were prepared by mechanical mixing and sintering process. Degradation studies indicated that the addition of bioceramics lowered the corrosion potential of the composites and slightly increased their corrosion rate compared to that of pure iron. In vitro cytotoxicity results showed an increase of cellular activity when rat smooth muscle cells interacted with the degrading composites compared to pure iron. X-ray radiogram analysis showed a consistent degradation progress with that found in vivo and positive tissue response up to 70 days implantation in sheep animal model. Therefore, the iron-based bioceramic composites have the potential to be used for biodegradable bone implant applications.
  13. Izadiyan Z, Basri M, Fard Masoumi HR, Abedi Karjiban R, Salim N, Kalantari K
    Mater Sci Eng C Mater Biol Appl, 2019 Jan 01;94:841-849.
    PMID: 30423770 DOI: 10.1016/j.msec.2018.10.015
    Nanoemulsions have been used as a drug carrier system, particularly for poorly water-soluble drugs. Sorafenib is a poorly soluble drug and also there is no parenteral treatment. The aim of this study is the development of nanoemulsions for intravenous administration of Sorafenib. The formulations were prepared by high energy emulsification method and optimized by using Response Surface Methodology (RSM). Here, the effect of independent composition variables of lecithin (1.16-2.84%, w/w), Medium-Chain Triglycerides (2.32-5.68%, w/w) and polysorbate 80 (0.58-1.42%, w/w) amounts on the properties of Sorafenib-loaded nanoemulsion was investigated. The three responses variables were particle size, zeta potential, and polydispersity index. Optimization of the conditions according to the three dependent variables was performed for the preparation of the Sorafenib-loaded nanoemulsions with the minimum value of particle size, suitable rage of zeta potential, and polydispersity index. A formulation containing 0.05% of Sorafenib kept its properties in a satisfactory range over the evaluated period. The composition with 3% Medium-Chain Triglycerides, 2.5% lecithin and 1.22% polysorbate 80 exhibited the smallest particle size and polydispersity index (43.17 nm and 0.22, respectively) with the zeta potential of -38.8 mV was the optimized composition. The fabricated nanoemulsion was characterized by the transmission electron microscope (TEM), viscosity, and stability assessment study. Also, the cytotoxicity result showed that the optimum formulations had no significant effect on a normal cell in a low concentration of the drug but could eliminate the cancer cells. The dose-dependent toxicity made it a suitable candidate for parenteral applications in the treatment of breast cancer. Furthermore, the optimized formulation indicated good storage stability for 3 months at different temperatures (4 ± 2 °C, 25 ± 2 °C and 45 ± 2 °C).
  14. Irfan M, Irfan M, Shah SM, Baig N, Saleh TA, Ahmed M, et al.
    Mater Sci Eng C Mater Biol Appl, 2019 Oct;103:109769.
    PMID: 31349444 DOI: 10.1016/j.msec.2019.109769
    Non-covalent electrostatic interaction between amide nitrogen and carbonyl carbon of shorter chain length of polyvinylpyrrolidone (PVP-k25) was developed with in-house carboxylic oxidized multiwall carbon nanotubes (O-MWCNT) and then blended with Polyethersulfone (PES) polymer. FTIR analysis was utilized to confirm bonding nature of nano-composites (NCs) of O-MWCNT/PVP-k25 and casting membranes. Non-solvent induces phase separation process developed regular finger-like channels in composite membranes whereas pristine PES exhibited spongy entities as studied by cross sectional analysis report of FESEM. Further, FESEM instrument was also utilized to observe the dispersion of O-MWCNT/PVP based nanocomposite (NCs) with PES and membranes leaching phenomena analysis. Contact angle experiments described 24% improvement of hydrophilic behaviour, leaching ratio of additives was reduced to 1.89%, whereas water flux enhanced up to 6 times. Bovine serum albumin (BSA) and lysozyme based antifouling analysis shown up to 25% improvement, whereas 84% of water flux was regained after protein fouling than pristine PES. Anticoagulant activity was reported by estimating prothrombin, thrombin, plasma re-calcification times and production of fibrinogen cluster with platelets-adhesions photographs and hemolysis experiments. Composite membranes exhibited 3.4 and 3 times better dialysis clearance ratios of urea and creatinine solutes as compared to the raw PES membrane.
  15. Bera H, Gaini C, Kumar S, Sarkar S, Boddupalli S, Ippagunta SR
    Mater Sci Eng C Mater Biol Appl, 2016 Oct 01;67:170-181.
    PMID: 27287111 DOI: 10.1016/j.msec.2016.05.016
    Novel alginate-fenugreek gum (FG) gel membrane coated hydroxypropylmethylcellulose (HPMC) based matrix tablets were developed for intragastric quetiapine fumarate (QF) delivery by combining floating and swelling mechanisms. The effects of polymer blend ratios [HPMC K4M:HPMC E15] and citric acid contents on time taken for 50% drug release (t50%, min) and drug release at 8h (Q8h, %) were studied to optimize the core tablets by 3(2) factorial design. The optimized tablets (F-O) exhibited t50% of 247.67±3.51min and Q8h of 71.11±0.32% with minimum errors in prediction. The optimized tablets were coated with Ca(+2) ions crosslinked alginate-FG gel membrane by diffusion-controlled interfacial complexation technique. The biopolymeric-coated optimized matrices exhibited superior buoyancy, preferred swelling characteristics and slower drug release rate. The drug release profiles of the QF-loaded uncoated and coated optimized matrices were best fitted in Korsmeyer-Peppas model with anomalous diffusion driven mechanism. The uncoated and coated tablets containing QF were also characterized for drug-excipients compatibility, thermal behaviour and surface morphology by FTIR, DSC and SEM analyses, respectively. Thus, the newly developed alginate-FG gel membrane coated HPMC matrices are appropriate for intragastric delivery of QF over a prolonged period of time with greater therapeutic benefits.
  16. Izadiyan Z, Shameli K, Miyake M, Teow SY, Peh SC, Mohamad SE, et al.
    PMID: 30606561 DOI: 10.1016/j.msec.2018.11.008
    Core-shell Fe3O4/Au nanostructures were constructed using an advanced method of two-step synthesis from Juglans regia (walnut) green husk extract. Several complementary methods were applied to investigate structural and magnetic properties of the samples. X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), electron diffraction, optical, thermogravimetric analysis (TGA), and vibrating sample magnetometer (VSM) were used for nanoparticle characterizations. As shown by HR-TEM, the mean diameter of core-shell Fe3O4/Au nanoparticles synthesized using co-precipitation method was 6.08 ± 1.06 nm. This study shows that the physical and structural properties of core-shell Fe3O4/Au nanoparticles possess intrinsic properties of gold and magnetite. VSM revealed that the core-shell Fe3O4/Au have high saturation magnetization and low coercivity due to the magnetic properties. The core-shell nanoparticles show the inhibitory concentration (IC)50 of 235 μg/ml against a colorectal cancer cell line, HT-29. When tested against non-cancer cells, IC50 was not achieved even up to 500 μg/ml. This study highlights the magnetic properties and anticancer action of core-shell Fe3O4/Au nanoparticles. This compound can be ideal candidate for cancer treatment and other biomedical applications.
  17. Barahuie F, Saifullah B, Dorniani D, Fakurazi S, Karthivashan G, Hussein MZ, et al.
    Mater Sci Eng C Mater Biol Appl, 2017 May 01;74:177-185.
    PMID: 28254283 DOI: 10.1016/j.msec.2016.11.114
    We have synthesized graphene oxide using improved Hummer's method in order to explore the potential use of the resulting graphene oxide as a nanocarrier for an active anticancer agent, chlorogenic acid (CA). The synthesized graphene oxide and chlorogenic acid-graphene oxide nanocomposite (CAGO) were characterized using Fourier transform infrared (FTIR) spectroscopy, thermogravimetry and differential thermogravimetry analysis, Raman spectroscopy, powder X-ray diffraction (PXRD), UV-vis spectroscopy and high resolution transmission electron microscopy (HRTEM) techniques. The successful conjugation of chlorogenic acid onto graphene oxide through hydrogen bonding and π-π interaction was confirmed by Raman spectroscopy, FTIR analysis and X-ray diffraction patterns. The loading of CA in the nanohybrid was estimated to be around 13.1% by UV-vis spectroscopy. The release profiles showed favourable, sustained and pH-dependent release of CA from CAGO nanocomposite and conformed well to the pseudo-second order kinetic model. Furthermore, the designed anticancer nanohybrid was thermally more stable than its counterpart. The in vitro cytotoxicity results revealed insignificant toxicity effect towards normal cell line, with a viability of >80% even at higher concentration of 50μg/mL. Contrarily, CAGO nanocomposite revealed enhanced toxic effect towards evaluated cancer cell lines (HepG2 human liver hepatocellular carcinoma cell line, A549 human lung adenocarcinoma epithelial cell line, and HeLa human cervical cancer cell line) compared to its free form.
  18. Ismail NA, Amin KAM, Majid FAA, Razali MH
    Mater Sci Eng C Mater Biol Appl, 2019 Oct;103:109770.
    PMID: 31349525 DOI: 10.1016/j.msec.2019.109770
    In this work, the potential of titanium dioxide nanoparticles incorporated gellan gum (GG + TiO2-NPs) biofilm as wound dressing material was investigated. The GG + TiO2-NPs biofilm was prepared via evaporative casting technique and was characterized using FTIR, XRD, and SEM to study their physiochemical properties. The mechanical properties, swelling and water vapor transmission rate (WVTR) of biofilm was determined to comply with an ideal wound dressing material. In vitro and in vivo wound healing studies was carried out to evaluate the performance of GG + TiO2-NPs biofilm. In vitro wound healing was studied on 3 T3 mouse fibroblast cells for cell viability, cell proliferation, and scratch assay. The acridine orange/propidium iodide (AO/PI) staining and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay were used to evaluate the viability of cell and cell proliferation. Cell migration assay was analyzed using Essen BioScience IncuCyteTM Zoom system. In vivo wound healing via open excision wounds model on Sprague Dawley rat was studied within 14 days. The FT-IR spectra of GG + TiO2-NPs biofilm show main bands assigned to OH stretching, OH deformation, and TiO stretching modes. XRD pattern of GG + TiO2-NPs biofilm suggesting that TiO2-NPs was successfully incorporated in biofilm and well distributed on the surface as proved by SEM analysis. The GG + TiO2-NPs biofilm shows higher mechanical strength and swelling (3.76 ± 0.11 MPa and 1061 ± 6%) as compared to pure GG film (3.32 ± 0.08 Mpa and 902 ± 6%), respectively. GG + TiO2-NPs biofilm shows good antibacterial properties as 9 ± 0.25 mm and 11 ± 0.06 mm exhibition zone was observed against Staphylococcus aureus and Escherichia coli bacteria, respectively. While no exhibition zone was obtained for pure GG biofilm. GG + TiO2-NPs biofilm also demonstrated better cell-to-cell interaction properties, as it's promoted cell proliferation and cell migration to accelerate open excision wound healing on Sprague Dawley rat. The wound treated with GG + TiO2-NPs biofilm was healed within 14 days, on the other hand, the wound is still can be seen when it was treated with GG. However, GG and GG + TiO2-NPs biofilm show no cytotoxicity effects on mouse fibroblast cells.
  19. Almasi D, Sadeghi M, Lau WJ, Roozbahani F, Iqbal N
    Mater Sci Eng C Mater Biol Appl, 2016 Jul 01;64:102-107.
    PMID: 27127033 DOI: 10.1016/j.msec.2016.03.053
    The present work reviews the current fabrication methods of the functionally graded polymeric material (FGPM) and introduces a novel fabrication method that is versatile in applications as compared to those of existing used methods. For the first time electrophoresis was used to control the distribution of the tetracycline hydrochloride (TC) in a film made of polylactic acid (PLA), aiming to induce antimicrobial effect on the film prepared. The elemental analysis on the film surface showed that by employing electrophoresis force, higher amount of TC was detected near the top surface of the film. Results also showed that the FGPM samples with higher percentage of the TC on the film surface were highly effective to minimize the growth of Escherichia coli. These findings are useful and important to improve dispersion quality of the particles in the composite material and further enhance its antibacterial property.
  20. Lee WH, Loo CY, Rohanizadeh R
    Mater Sci Eng C Mater Biol Appl, 2019 Jun;99:929-939.
    PMID: 30889767 DOI: 10.1016/j.msec.2019.02.030
    This study has evaluated the effect of functionalizing surface charges of hydroxyapatite on the modulation of loading and release of curcumin nanoparticles. The increase in loading and release of curcumin nanoparticles indirectly translates to enhanced anti-cancer effect. Owing to the hydrophobic characteristics of curcumin which have resulted in low bioavailability in cancer cells, the engineering curcumin into nanoparticles is therefore a viable solution to overcomes its limitation. In order to maintain a sustained release profile of curcumin nanoparticles, curcumin nanoparticles were loaded (Cur-NPs) onto hydroxyapatite (HA) via physical adsorption. To regulate the adsorption capacity of Cur-NPs onto HA, we functionalized HA with different carboxylic acids (lactic acid, tartaric acid and citric acid). The presence of carboxylic groups on HA significantly affected the binding and the release profile of Cur-NPs. The effects of Cur-NPs loaded HA were evaluated on breast cancer cell line (MCF-7), which included cell proliferation, cellular uptake of Cur-NPs, apoptosis and cell cycle analysis. The results showed that carboxylic acid-functionalized HA demonstrated higher anti-proliferating activity and time dependent cytoplasmic uptake of Cur-NPs in MCF-7 cells compared to unmodified HA. In addition, Cur-NPs loaded on functionalized HA induced higher apoptosis and cell cycle arrest in MCF-7 cells compared to unmodified HA. The present study indicates that the delivery of Cur-NPs to breast cancer using carboxylic acid-functionalized HA carrier could improve their anti-cancer activities.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links