Displaying publications 41 - 60 of 128 in total

Abstract:
Sort:
  1. Ng EP, Goh JY, Ling TC, Mukti RR
    Nanoscale Res Lett, 2013;8(1):120.
    PMID: 23497184 DOI: 10.1186/1556-276X-8-120
    Nanoporous materials such as Mobil composite material number 41 (MCM-41) are attractive for applications such as catalysis, adsorption, supports, and carriers. Green synthesis of MCM-41 is particularly appealing because the chemical reagents are useful and valuable. We report on the eco-friendly synthesis of MCM-41 nanoporous materials via multi-cycle approach by re-using the non-reacted reagents in supernatant as mother liquor after separating the solid product. This approach was achieved via minimal requirement of chemical compensation where additional fresh reactants were added into the mother liquor followed by pH adjustment after each cycle of synthesis. The solid product of each successive batch was collected and characterized while the non-reacted reagents in supernatant can be recovered and re-used to produce subsequent cycle of MCM-41. The multi-cycle synthesis is demonstrated up to three times in this research. This approach suggests a low cost and eco-friendly synthesis of nanoporous material since less waste is discarded after the product has been collected, and in addition, product yield can be maintained at the high level.
  2. Musa A, Ahmad MB, Hussein MZ, Saiman MI, Sani HA
    Nanoscale Res Lett, 2016 Dec;11(1):438.
    PMID: 27696320
    The synthesis of copper nanoparticles was carried out with gelatin as a stabilizer by reducing CuSO4.5H2O ions using hydrazine. Ascorbic acid and aqueous NaOH were also used as an antioxidant and pH controller, respectively. The effects of NaOH, hydrazine, and concentration of gelatin as stabilizer were studied. The synthesized copper nanoparticles were characterized by UV-vis spectroscopy, XRD, zeta potential measurements, FTIR, EDX, FESEM, and TEM. The formation of CuNPs@Gelatin is initially confirmed by UV-vis spectroscopic analysis with the characteristic band at 583 nm. XRD and TEM reports revealed that CuNPs@Gelatin (0.75 wt.%) is highly crystalline and spherical in shape with optimum average size of 4.21 ± 0.95 nm. FTIR studies indicated the presence of amide group on the surface of the CuNPs indicating the stability of CuNPs which is further supported by zeta potential measurements with the negative optimum value of -37.90 ± 0.6 mV. The CuNPs@G4 showed a good catalytic activity against methylene blue (MB) reduction using NaBH4 as a reducing agent in an aqueous solution. The best enhanced properties of CuNPs@G4 were found for the 0.75 wt.% gelatin concentration. Thermodynamic parameters (ΔH and ΔS) indicate that under the studied temperature, the reduction of MB by CuNPs@G4 is not feasible and had endothermic in nature.
  3. Mohiuddin M, Arbain D, Islam AK, Ahmad MS, Ahmad MN
    Nanoscale Res Lett, 2016 Dec;11(1):95.
    PMID: 26887579 DOI: 10.1186/s11671-016-1292-1
    A biosensor for measuring the antidiabetic potential of medicinal plants was developed by covalent immobilization of α-glucosidase (AG) enzyme onto amine-functionalized multi-walled carbon nanotubes (MWCNTs-NH2). The immobilized enzyme was entrapped in freeze-thawed polyvinyl alcohol (PVA) together with p-nitrophenyl-α-D-glucopyranoside (PNPG) on the screen-printed carbon electrode at low pH to prevent the premature reaction between PNPG and AG enzyme. The enzymatic reaction within the biosensor is inhibited by bioactive compounds in the medicinal plant extracts. The capability of medicinal plants to inhibit the AG enzyme on the electrode correlates to the potential of the medicinal plants to inhibit the production of glucose from the carbohydrate in the human body. Thus, the inhibition indicates the antidiabetic potential of the medicinal plants. The performance of the biosensor was evaluated to measure the antidiabetic potential of three medicinal plants such as Tebengau (Ehretis laevis), Cemumar (Micromelum pubescens), and Kedondong (Spondias dulcis) and acarbose (commercial antidiabetic drug) via cyclic voltammetry, amperometry, and spectrophotometry. The cyclic voltammetry (CV) response for the inhibition of the AG enzyme activity by Tebengau plant extracts showed a linear relation in the range from 0.423-8.29 μA, and the inhibition detection limit was 0.253 μA. The biosensor exhibited good sensitivity (0.422 μA/mg Tebengau plant extracts) and rapid response (22 s). The biosensor retains approximately 82.16 % of its initial activity even after 30 days of storage at 4 °C.
  4. Mohammad Haniff MA, Lee HW, Bien DC, Teh AS, Azid IA
    Nanoscale Res Lett, 2014;9(1):49.
    PMID: 24472487 DOI: 10.1186/1556-276X-9-49
    This paper presents a functionalized, horizontally oriented carbon nanotube network as a sensing element to enhance the sensitivity of a pressure sensor. The synthesis of horizontally oriented nanotubes from the AuFe catalyst and their deposition onto a mechanically flexible substrate via transfer printing are studied. Nanotube formation on thermally oxidized Si (100) substrates via plasma-enhanced chemical vapor deposition controls the nanotube coverage and orientation on the flexible substrate. These nanotubes can be simply transferred to the flexible substrate without changing their physical structure. When tested under a pressure range of 0 to 50 kPa, the performance of the fabricated pressure sensor reaches as high as approximately 1.68%/kPa, which indicates high sensitivity to a small change of pressure. Such sensitivity may be induced by the slight contact in isolated nanotubes. This nanotube formation, in turn, enhances the modification of the contact and tunneling distance of the nanotubes upon the deformation of the network. Therefore, the horizontally oriented carbon nanotube network has great potential as a sensing element for future transparent sensors.
  5. Mehrali M, Sadeghinezhad E, Latibari ST, Kazi SN, Mehrali M, Zubir MN, et al.
    Nanoscale Res Lett, 2014;9(1):15.
    PMID: 24410867 DOI: 10.1186/1556-276X-9-15
    In the present study, stable homogeneous graphene nanoplatelet (GNP) nanofluids were prepared without any surfactant by high-power ultrasonic (probe) dispersion of GNPs in distilled water. The concentrations of nanofluids were maintained at 0.025, 0.05, 0.075, and 0.1 wt.% for three different specific surface areas of 300, 500, and 750 m2/g. Transmission electron microscopy image shows that the suspensions are homogeneous and most of the materials have been well dispersed. The stability of nanofluid was investigated using a UV-visible spectrophotometer in a time span of 600 h, and zeta potential after dispersion had been investigated to elucidate its role on dispersion characteristics. The rheological properties of GNP nanofluids approach Newtonian and non-Newtonian behaviors where viscosity decreases linearly with the rise of temperature. The thermal conductivity results show that the dispersed nanoparticles can always enhance the thermal conductivity of the base fluid, and the highest enhancement was obtained to be 27.64% in the concentration of 0.1 wt.% of GNPs with a specific surface area of 750 m2/g. Electrical conductivity of the GNP nanofluids shows a significant enhancement by dispersion of GNPs in distilled water. This novel type of nanofluids shows outstanding potential for replacements as advanced heat transfer fluids in medium temperature applications including solar collectors and heat exchanger systems.
  6. Mastuli MS, Kamarulzaman N, Nawawi MA, Mahat AM, Rusdi R, Kamarudin N
    Nanoscale Res Lett, 2014;9(1):134.
    PMID: 24650322 DOI: 10.1186/1556-276X-9-134
    In the preparation of nanostructured materials, it is important to optimize synthesis parameters in order to obtain the desired material. This work investigates the role of complexing agents, oxalic acid and tartaric acid, in the production of MgO nanocrystals. Results from simultaneous thermogravimetric analysis (STA) show that the two different synthesis routes yield precursors with different thermal profiles. It is found that the thermal profiles of the precursors can reveal the effects of crystal growth during thermal annealing. X-ray diffraction confirms that the final products are pure, single phase and of cubic shape. It is also found that complexing agents can affect the rate of crystal growth. The structures of the oxalic acid and tartaric acid as well as the complexation sites play very important roles in the formation of the nanocrystals. The complexing agents influence the rate of growth which affects the final crystallite size of the materials. Surprisingly, it is also found that oxalic acid and tartaric acid act as surfactants inhibiting crystal growth even at a high temperature of 950°C and a long annealing time of 36 h. The crystallite formation routes are proposed to be via linear and branched polymer networks due to the different structures of the complexing agents.
  7. Maarof S, Ali AA, Hashim AM
    Nanoscale Res Lett, 2019 Apr 24;14(1):143.
    PMID: 31016416 DOI: 10.1186/s11671-019-2976-0
    We present a synthesis of large-area single-layer graphene on copper substrate using a refined cooking palm oil, a natural single carbon source, by a home-made spray injector-assisted chemical vapor deposition system. The effects of the distance between spray nozzle and substrate, and growth temperature are studied. From Raman mapping analysis, shorter distance of 1 cm and temperature of around 950 °C lead to the growth of large-area single-layer graphene with a coverage up to 97% of the measured area size of 6400 μm2. The crystallinity of the grown single layer graphene is relatively good due to high distribution percentage of FWHM values of 2D band that is below 30 cm-1. However, the defect concentration is relatively high, and it suggests that a flash-cooling technique needs to be introduced.
  8. Lu B, Liu L, Wang J, Chen Y, Li Z, Gopinath SCB, et al.
    Nanoscale Res Lett, 2020 May 11;15(1):105.
    PMID: 32394009 DOI: 10.1186/s11671-020-03331-y
    Abdominal aortic aneurysm (AAA) refers to the enlargement of the lower artery of the abdominal aorta, and identification of an early detection tool is urgently needed for diagnosis. In the current study, an interdigitated electrode (IDE) sensing surface was used to identify miRNA-335-5p, which reflects the formation of AAAs. The uniformity of the silica material was observed by 3D profilometry, and the chemically modified highly conductive surface improved the detection via the I-V mode. The targeted miRNA-335-5p was detected in a dose-dependent manner and based on linear regression and 3σ analyses, the sensitivity was determined to be 1 fM with a biotinylated probe. The high specificity was shown by discriminating the target sequence from noncomplementary and single- and triple-mismatched sequences. These outputs demonstrated the high-performance detection of miRNA-335-5p with good reproducibility for determination of the severity of AAA.
  9. Lim J, Yeap SP, Che HX, Low SC
    Nanoscale Res Lett, 2013;8(1):381.
    PMID: 24011350 DOI: 10.1186/1556-276X-8-381
    Here we provide a complete review on the use of dynamic light scattering (DLS) to study the size distribution and colloidal stability of magnetic nanoparticles (MNPs). The mathematical analysis involved in obtaining size information from the correlation function and the calculation of Z-average are introduced. Contributions from various variables, such as surface coating, size differences, and concentration of particles, are elaborated within the context of measurement data. Comparison with other sizing techniques, such as transmission electron microscopy and dark-field microscopy, revealed both the advantages and disadvantages of DLS in measuring the size of magnetic nanoparticles. The self-assembly process of MNP with anisotropic structure can also be monitored effectively by DLS.
  10. Li Y, Van Toan N, Wang Z, Samat KFB, Ono T
    Nanoscale Res Lett, 2021 Apr 20;16(1):64.
    PMID: 33877472 DOI: 10.1186/s11671-021-03524-z
    Porous silicon (Si) is a low thermal conductivity material, which has high potential for thermoelectric devices. However, low output performance of porous Si hinders the development of thermoelectric performance due to low electrical conductivity. The large contact resistance from nonlinear contact between porous Si and metal is one reason for the reduction of electrical conductivity. In this paper, p- and n-type porous Si were formed on Si substrate by metal-assisted chemical etching. To decrease contact resistance, p- and n-type spin on dopants are employed to dope an impurity element into p- and n-type porous Si surface, respectively. Compared to the Si substrate with undoped porous samples, ohmic contact can be obtained, and the electrical conductivity of doped p- and n-type porous Si can be improved to 1160 and 1390 S/m, respectively. Compared with the Si substrate, the special contact resistances for the doped p- and n-type porous Si layer decreases to 1.35 and 1.16 mΩ/cm2, respectively, by increasing the carrier concentration. However, the increase of the carrier concentration induces the decline of the Seebeck coefficient for p- and n-type Si substrates with doped porous Si samples to 491 and 480 μV/K, respectively. Power factor is related to the Seebeck coefficient and electrical conductivity of thermoelectric material, which is one vital factor that evaluates its output performance. Therefore, even though the Seebeck coefficient values of Si substrates with doped porous Si samples decrease, the doped porous Si layer can improve the power factor compared to undoped samples due to the enhancement of electrical conductivity, which facilitates its development for thermoelectric application.
  11. Kura AU, Cheah PS, Hussein MZ, Hassan Z, Tengku Azmi TI, Hussein NF, et al.
    Nanoscale Res Lett, 2014;9(1):261.
    PMID: 24948886 DOI: 10.1186/1556-276X-9-261
    Nanotechnology, through nanomedicine, allowed drugs to be manipulated into nanoscale sizes for delivery to the different parts of the body, at the same time, retaining the valuable pharmacological properties of the drugs. However, efficient drug delivery and excellent release potential of these delivery systems may be hindered by possible untoward side effects. In this study, the sub-acute toxicity of oral zinc aluminium nanocomposite with and without levodopa was assessed using the Organization for Economic Co-operation and Development guidelines. No sign or symptom of toxicity was observed in orally treated rats with the nanocomposite at 5 and 500 mg/kg concentrations. Body weight gain, feeding, water intake, general survival and organosomatic index were not significantly different between control and treatment groups. Aspartate aminotransferase (AST) in 500 mg/kg levodopa nanocomposite (169 ± 30 U/L), 5 mg/kg levodopa nanocomposite (172 ± 49 U/L), and 500 mg/kg layered double hydroxides (LDH) nanocomposite (175 ± 25 U/L) were notably elevated compared to controls (143 ± 05 U/L); but the difference were not significant (p > 0.05). However, the differences in aspartate aminotransferase/alanine aminotransferase (AST/ALT) ratio of 500 mg/kg levodopa nanocomposite (0.32 ± 0.12) and 500 mg/kg LDH nanocomposite (0.34 ± 0.12) were statistically significant (p 
  12. Kura AU, Saifullah B, Cheah PS, Hussein MZ, Azmi N, Fakurazi S
    Nanoscale Res Lett, 2015;10:105.
    PMID: 25852400 DOI: 10.1186/s11671-015-0742-5
    Layered double hydroxide (LDH) is an inorganic-organic nano-layered material that harbours drug between its two-layered sheets, forming a sandwich-like structure. It is attracting a great deal of attention as an alternative drug delivery (nanodelivery) system in the field of pharmacology due to their relative low toxic potential. The production of these nanodelivery systems, aimed at improving human health through decrease toxicity, targeted delivery of the active compound to areas of interest with sustained release ability. In this study, we administered zinc-aluminium-LDH-levodopa nanocomposite (ZAL) and zinc-aluminium nanocomposite (ZA) to Sprague Dawley rats to evaluate for acute oral toxicity following OECD guidelines. The oral administration of ZAL and ZA at a limit dose of 2,000 mg/kg produced neither mortality nor acute toxic signs throughout 14 days of the observation. The percentage of body weight gain of the animals showed no significant difference between control and treatment groups. Animal from the two treated groups gained weight continuously over the study period, which was shown to be significantly higher than the weight at the beginning of the study (P 
  13. Kooy N, Mohamed K, Pin LT, Guan OS
    Nanoscale Res Lett, 2014;9(1):320.
    PMID: 25024682 DOI: 10.1186/1556-276X-9-320
    Since its introduction in 1995, nanoimprint lithography has been demonstrated in many researches as a simple, low-cost, and high-throughput process for replicating micro- and nanoscale patterns. Due to its advantages, the nanoimprint lithography method has been rapidly developed over the years as a promising alternative to conventional nanolithography processes to fulfill the demands generated from the recent developments in the semiconductor and flexible electronics industries, which results in variations of the process. Roll-to-roll (R2R) nanoimprint lithography (NIL) is the most demanded technique due to its high-throughput fulfilling industrial-scale application. In the present work, a general literature review on the various types of nanoimprint lithography processes especially R2R NIL and the methods commonly adapted to fabricate imprint molds are presented to provide a clear view and understanding on the nanoimprint lithography technique as well as its recent developments.
  14. Kiranda HK, Mahmud R, Abubakar D, Zakaria ZA
    Nanoscale Res Lett, 2018 Jan 02;13(1):1.
    PMID: 29299709 DOI: 10.1186/s11671-017-2411-3
    The evolution of nanomaterial in science has brought about a growing increase in nanotechnology, biomedicine, and engineering fields. This study was aimed at fabrication and characterization of conjugated gold-cockle shell-derived calcium carbonate nanoparticles (Au-CSCaCO3NPs) for biomedical application. The synthetic technique employed used gold nanoparticle citrate reduction method and a simple precipitation method coupled with mechanical use of a Programmable roller-ball mill. The synthesized conjugated nanomaterial was characterized for its physicochemical properties using transmission electron microscope (TEM), field emission scanning electron microscope (FESEM) equipped with energy dispersive X-ray (EDX) and Fourier transform infrared spectroscopy (FTIR). However, the intricacy of cellular mechanisms can prove challenging for nanomaterial like Au-CSCaCO3NPs and thus, the need for cytotoxicity assessment. The obtained spherical-shaped nanoparticles (light-green purplish) have an average diameter size of 35 ± 16 nm, high carbon and oxygen composition. The conjugated nanomaterial, also possesses a unique spectra for aragonite polymorph and carboxylic bond significantly supporting interactions between conjugated nanoparticles. The negative surface charge and spectra absorbance highlighted their stability. The resultant spherical shaped conjugated Au-CSCaCO3NPs could be a great nanomaterial for biomedical applications.
  15. Kiani MJ, Harun FK, Ahmadi MT, Rahmani M, Saeidmanesh M, Zare M
    Nanoscale Res Lett, 2014;9(1):371.
    PMID: 25114659 DOI: 10.1186/1556-276X-9-371
    Graphene is an attention-grabbing material in electronics, physics, chemistry, and even biology because of its unique properties such as high surface-area-to-volume ratio. Also, the ability of graphene-based materials to continuously tune charge carriers from holes to electrons makes them promising for biological applications, especially in lipid bilayer-based sensors. Furthermore, changes in charged lipid membrane properties can be electrically detected by a graphene-based electrolyte-gated graphene field effect transistor (GFET). In this paper, a monolayer graphene-based GFET with a focus on the conductance variation caused by membrane electric charges and thickness is studied. Monolayer graphene conductance as an electrical detection platform is suggested for neutral, negative, and positive electric-charged membrane. The electric charge and thickness of the lipid bilayer (Q LP and L LP) as a function of carrier density are proposed, and the control parameters are defined. Finally, the proposed analytical model is compared with experimental data which indicates good overall agreement.
  16. Kiani MJ, Ahmadi MT, Karimi Feiz Abadi H, Rahmani M, Hashim A, Che Harun FK
    Nanoscale Res Lett, 2013;8(1):173.
    PMID: 23590751 DOI: 10.1186/1556-276X-8-173
    Graphene has attracted great interest because of unique properties such as high sensitivity, high mobility, and biocompatibility. It is also known as a superior candidate for pH sensing. Graphene-based ion-sensitive field-effect transistor (ISFET) is currently getting much attention as a novel material with organic nature and ionic liquid gate that is intrinsically sensitive to pH changes. pH is an important factor in enzyme stabilities which can affect the enzymatic reaction and broaden the number of enzyme applications. More accurate and consistent results of enzymes must be optimized to realize their full potential as catalysts accordingly. In this paper, a monolayer graphene-based ISFET pH sensor is studied by simulating its electrical measurement of buffer solutions for different pH values. Electrical detection model of each pH value is suggested by conductance modelling of monolayer graphene. Hydrogen ion (H+) concentration as a function of carrier concentration is proposed, and the control parameter (Ƥ) is defined based on the electro-active ions absorbed by the surface of the graphene with different pH values. Finally, the proposed new analytical model is compared with experimental data and shows good overall agreement.
  17. Khan AA, Abdulbaqi IM, Abou Assi R, Murugaiyah V, Darwis Y
    Nanoscale Res Lett, 2018 Oct 15;13(1):323.
    PMID: 30324291 DOI: 10.1186/s11671-018-2744-6
    Verapamil is a calcium channel blocker and highly effective in the treatment of hypertension, angina pectoris, and other diseases. However, the drug has a low bioavailability of 20 to 35% due to the first pass effect. The main objective of this study was to develop hybrid verapamil-dextran nanostructured lipid carriers (HVD-NLCs) in an attempt to increase verapamil cellular uptake. The formulations were successfully prepared by a high-shear homogenization method and statistically optimized using 24 full factorial design. The HVD-NLCs formulations were freeze-dried using trehalose as a cryoprotectant. The results showed that the optimized formula (VER-9) possessed a particle size (PS), polydispersity index (PDI), and the percentage of entrapment efficiency (%EE) of 192.29 ± 2.98, 0.553 ± 0.075, and 93.26 ± 2.66%, respectively. The incorporation of dextran sulfate in the formulation had prolonged the release of verapamil (~ 85% in 48 h) in the simulated gastric fluid (pH 1.2) and simulated intestinal fluid (pH 6.8). The differential scanning calorimetry analysis showed no chemical interaction between verapamil and the excipients in the formulation. While wide-angle X-ray scattering studies demonstrated the drug in the amorphous form after the incorporation in the NLCs. The transmission electron microscopy and scanning electron microscopy images revealed that the nanoparticles had spherical shape. The cellular uptake study using Caco-2 cell line showed a higher verapamil uptake from HVD-NLCs as compared to verapamil solution and verapamil-dextran complex. The optimized formulation (VER-9) stored in the refrigerated condition (5 °C ± 3 °C) was stable for 6 months. In conclusion, the HVD-NLCs were potential carriers for verapamil as they significantly enhanced the cellular uptake of the drug.
  18. Kazi SN, Badarudin A, Zubir MN, Ming HN, Misran M, Sadeghinezhad E, et al.
    Nanoscale Res Lett, 2015;10:212.
    PMID: 25995712 DOI: 10.1186/s11671-015-0882-7
    This paper presents a unique synergistic behavior between a graphene oxide (GO) and graphene nanoplatelet (GnP) composite in an aqueous medium. The results showed that GO stabilized GnP colloid near its isoelectric point and prevented rapid agglomeration and sedimentation. It was considered that a rarely encountered charge-dependent electrostatic interaction between the highly charged GO and weakly charged GnP particles kept GnP suspended at its rapid coagulation and phase separation pH. Sedimentation and transmission electron microscope (TEM) micrograph images revealed the evidence of highly stable colloidal mixtures while zeta potential measurement provided semi-quantitative explanation on the mechanism of stabilization. GnP suspension was confirmed via UV-vis spectral data while contact angle measurement elucidated the close resemblance to an aqueous solution indicating the ability of GO to mediate the flocculation prone GnP colloids. About a tenfold increase in viscosity was recorded at a low shear rate in comparison to an individual GO solution due to a strong interaction manifested between participating colloids. An optimum level of mixing ratio between the two constituents was also obtained. These new findings related to an interaction between charge-based graphitic carbon materials would open new avenues for further exploration on the enhancement of both GO and GnP functionalities particularly in mechanical and electrical domains.
  19. Kawamura G, Ohmi H, Tan WK, Lockman Z, Muto H, Matsuda A
    Nanoscale Res Lett, 2015;10:219.
    PMID: 26019696 DOI: 10.1186/s11671-015-0924-1
    ABSTRACT: Dye-sensitized solar cells composed of a photoanode of Ag nanoparticle (NP)-deposited TiO2 nanotube (TNT) arrays were fabricated. The TNT arrays were prepared by anodizing Ti films on fluorine-doped tin oxide (FTO)-coated glass substrates. Efficient charge transportation through the ordered nanostructure of TNT arrays should be carried out compared to conventional particulate TiO2 electrodes. However, it has been a big challenge to grow TNT arrays on FTO glass substrates with the lengths needed for sufficient light-harvesting (tens of micrometers). In this work, we deposited Ag nanoparticles (NPs) on the wall of TNT arrays to enhance light-harvesting property. Dye-sensitized solar cells with these Ag NP-deposited TNT arrays yielded a higher power conversion efficiency (2.03 %) than those without Ag NPs (1.39 %).

    PACS CODES: 06.60.Ei Sample preparation, 81.05.Bx Metals, Semimetals, Alloys, 81.07.De Nanotubes.

  20. Kashif M, Ali ME, Ali SM, Hashim U, Hamid SB
    Nanoscale Res Lett, 2013;8(1):68.
    PMID: 23399029 DOI: 10.1186/1556-276X-8-68
    ZnO nanorods were synthesized using a low-cost sol-gel spin coating technique. The synthesized nanorods were consisted of hexagonal phase having c-axis orientation. SEM images reflected perpendicular ZnO nanorods forming bridging network in some areas. The impact of different hydrogen concentrations on the Pd-sensitized ZnO nanorods was investigated using an impedance spectroscopy (IS). The grain boundary resistance (Rgb) significantly contributed to the sensing properties of hydrogen gas. The boundary resistance was decreased from 11.95 to 3.765 kΩ when the hydrogen concentration was increased from 40 to 360 ppm. IS gain curve showed a gain of 6.5 for 360 ppm of hydrogen at room temperature. Nyquist plot showed reduction in real part of impedance at low frequencies on exposure to different concentrations of hydrogen. Circuit equivalency was investigated by placing capacitors and resistors to identify the conduction mechanism according to complex impedance Nyquist plot. Variations in nanorod resistance and capacitance in response to the introduction of various concentrations of hydrogen gas were obtained from the alternating current impedance spectra.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links