Displaying publications 41 - 60 of 163 in total

Abstract:
Sort:
  1. Fu JYL, Chua CL, Abu Bakar AS, Vythilingam I, Wan Sulaiman WY, Alphey L, et al.
    PLoS Negl Trop Dis, 2023 Jun;17(6):e0011423.
    PMID: 37307291 DOI: 10.1371/journal.pntd.0011423
    BACKGROUND: Emerging arboviruses such as chikungunya and Zika viruses have unexpectedly caused widespread outbreaks in tropical and subtropical regions recently. Ross River virus (RRV) is endemic in Australia and has epidemic potential. In Malaysia, Aedes mosquitoes are abundant and drive dengue and chikungunya outbreaks. We assessed risk of an RRV outbreak in Kuala Lumpur, Malaysia by determining vector competence of local Aedes mosquitoes and local seroprevalence as a proxy of human population susceptibility.

    METHODOLOGY/PRINCIPAL FINDINGS: We assessed oral susceptibility of Malaysian Ae. aegypti and Ae. albopictus by real-time PCR to an Australian RRV strain SW2089. Replication kinetics in midgut, head and saliva were determined at 3 and 10 days post-infection (dpi). With a 3 log10 PFU/ml blood meal, infection rate was higher in Ae. albopictus (60%) than Ae. aegypti (15%; p<0.05). Despite similar infection rates at 5 and 7 log10 PFU/ml blood meals, Ae. albopictus had significantly higher viral loads and required a significantly lower median oral infectious dose (2.7 log10 PFU/ml) than Ae. aegypti (4.2 log10 PFU/ml). Ae. albopictus showed higher vector competence, with higher viral loads in heads and saliva, and higher transmission rate (RRV present in saliva) of 100% at 10 dpi, than Ae. aegypti (41%). Ae. aegypti demonstrated greater barriers at either midgut escape or salivary gland infection, and salivary gland escape. We then assessed seropositivity against RRV among 240 Kuala Lumpur inpatients using plaque reduction neutralization, and found a low rate of 0.8%.

    CONCLUSIONS/SIGNIFICANCE: Both Ae. aegypti and Ae. albopictus are susceptible to RRV, but Ae. albopictus displays greater vector competence. Extensive travel links with Australia, abundant Aedes vectors, and low population immunity places Kuala Lumpur, Malaysia at risk of an imported RRV outbreak. Surveillance and increased diagnostic awareness and capacity are imperative to prevent establishment of new arboviruses in Malaysia.

  2. Zhang R, Lee WC, Lau YL, Albrecht L, Lopes SC, Costa FT, et al.
    PLoS Negl Trop Dis, 2016 08;10(8):e0004912.
    PMID: 27509168 DOI: 10.1371/journal.pntd.0004912
    Malaria parasites dramatically alter the rheological properties of infected red blood cells. In the case of Plasmodium vivax, the parasite rapidly decreases the shear elastic modulus of the invaded RBC, enabling it to avoid splenic clearance. This study highlights correlation between rosette formation and altered membrane deformability of P. vivax-infected erythrocytes, where the rosette-forming infected erythrocytes are significantly more rigid than their non-rosetting counterparts. The adhesion of normocytes to the PvIRBC is strong (mean binding force of 440pN) resulting in stable rosette formation even under high physiological shear flow stress. Rosetting may contribute to the sequestration of PvIRBC schizonts in the host microvasculature or spleen.
  3. Olliaro P, Fouque F, Kroeger A, Bowman L, Velayudhan R, Santelli AC, et al.
    PLoS Negl Trop Dis, 2018 02;12(2):e0005967.
    PMID: 29389959 DOI: 10.1371/journal.pntd.0005967
    BACKGROUND: Research has been conducted on interventions to control dengue transmission and respond to outbreaks. A summary of the available evidence will help inform disease control policy decisions and research directions, both for dengue and, more broadly, for all Aedes-borne arboviral diseases.

    METHOD: A research-to-policy forum was convened by TDR, the Special Programme for Research and Training in Tropical Diseases, with researchers and representatives from ministries of health, in order to review research findings and discuss their implications for policy and research.

    RESULTS: The participants reviewed findings of research supported by TDR and others. Surveillance and early outbreak warning. Systematic reviews and country studies identify the critical characteristics that an alert system should have to document trends reliably and trigger timely responses (i.e., early enough to prevent the epidemic spread of the virus) to dengue outbreaks. A range of variables that, according to the literature, either indicate risk of forthcoming dengue transmission or predict dengue outbreaks were tested and some of them could be successfully applied in an Early Warning and Response System (EWARS). Entomological surveillance and vector management. A summary of the published literature shows that controlling Aedes vectors requires complex interventions and points to the need for more rigorous, standardised study designs, with disease reduction as the primary outcome to be measured. House screening and targeted vector interventions are promising vector management approaches. Sampling vector populations, both for surveillance purposes and evaluation of control activities, is usually conducted in an unsystematic way, limiting the potentials of entomological surveillance for outbreak prediction. Combining outbreak alert and improved approaches of vector management will help to overcome the present uncertainties about major risk groups or areas where outbreak response should be initiated and where resources for vector management should be allocated during the interepidemic period.

    CONCLUSIONS: The Forum concluded that the evidence collected can inform policy decisions, but also that important research gaps have yet to be filled.

  4. Leon AJ, Borisevich V, Boroumand N, Seymour R, Nusbaum R, Escaffre O, et al.
    PLoS Negl Trop Dis, 2018 03;12(3):e0006343.
    PMID: 29538374 DOI: 10.1371/journal.pntd.0006343
    Henipavirus infection causes severe respiratory and neurological disease in humans that can be fatal. To characterize the pathogenic mechanisms of henipavirus infection in vivo, we performed experimental infections in ferrets followed by genome-wide gene expression analysis of lung and brain tissues. The Hendra, Nipah-Bangladesh, and Nipah-Malaysia strains caused severe respiratory and neurological disease with animals succumbing around 7 days post infection. Despite the presence of abundant viral shedding, animal-to-animal transmission did not occur. The host gene expression profiles of the lung tissue showed early activation of interferon responses and subsequent expression of inflammation-related genes that coincided with the clinical deterioration. Additionally, the lung tissue showed unchanged levels of lymphocyte markers and progressive downregulation of cell cycle genes and extracellular matrix components. Infection in the brain resulted in a limited breadth of the host responses, which is in accordance with the immunoprivileged status of this organ. Finally, we propose a model of the pathogenic mechanisms of henipavirus infection that integrates multiple components of the host responses.
  5. Sapsutthipas S, Leong PK, Akesowan S, Pratanaphon R, Tan NH, Ratanabanangkoon K
    PLoS Negl Trop Dis, 2015 Mar;9(3):e0003609.
    PMID: 25774998 DOI: 10.1371/journal.pntd.0003609
    Snake envenomation has been estimated to affect 1.8 million people annually with about 94,000 deaths mostly in poor tropical countries. Specific antivenoms are the only rational and effective therapy for these cases. Efforts are being made to produce effective, affordable and sufficient antivenoms for these victims. The immunization process, which has rarely been described in detail, is one step that needs to be rigorously studied and improved especially with regard to the production of polyspecific antisera. The polyspecific nature of therapeutic antivenom could obviate the need to identify the culprit snake species. The aim of this study was to produce potent polyspecific antisera against 3 medically important vipers of Thailand and its neighboring countries, namely Cryptelytrops albolabris "White lipped pit viper" (CA), Calleoselasma rhodostoma "Malayan pit viper" (CR), and Daboia siamensis "Russell's viper" (DS). Four horses were immunized with a mixture of the 3 viper venoms using the 'low dose, low volume multi-site' immunization protocol. The antisera showed rapid rise in ELISA titers against the 3 venoms and reached plateau at about the 8th week post-immunization. The in vivo neutralization potency (P) of the antisera against CA, CR and DS venoms was 10.40, 2.42 and 0.76 mg/ml, respectively and was much higher than the minimal potency limits set by Queen Soavabha Memorial Institute (QSMI). The corresponding potency values for the QSMI monospecific antisera against CA, CR and DS venoms were 7.28, 3.12 and 1.50 mg/ml, respectively. The polyspecific antisera also effectively neutralized the procoagulant, hemorrhagic, necrotic and nephrotoxic activities of the viper venoms. This effective immunization protocol should be useful in the production of potent polyspecific antisera against snake venoms, and equine antisera against tetanus, diphtheria or rabies.
  6. Pruksaphon K, Tan KY, Tan CH, Simsiriwong P, Gutiérrez JM, Ratanabanangkoon K
    PLoS Negl Trop Dis, 2020 Aug;14(8):e0008581.
    PMID: 32857757 DOI: 10.1371/journal.pntd.0008581
    The aim of this study was to develop an in vitro assay for use in place of in vivo assays of snake venom lethality and antivenom neutralizing potency. A novel in vitro assay has been developed based on the binding of post-synaptically acting α-neurotoxins to nicotinic acetylcholine receptor (nAChR), and the ability of antivenoms to prevent this binding. The assay gave high correlation in previous studies with the in vivo murine lethality tests (Median Lethal Dose, LD50), and the neutralization of lethality assays (Median Effective Dose, ED50) by antisera against Naja kaouthia, Naja naja and Bungarus candidus venoms. Here we show that, for the neurotoxic venoms of 20 elapid snake species from eight genera and four continents, the in vitro median inhibitory concentrations (IC50s) for α-neurotoxin binding to purified nAChR correlated well with the in vivo LD50s of the venoms (R2 = 0.8526, p < 0.001). Furthermore, using this assay, the in vitro ED50s of a horse pan-specific antiserum against these venoms correlated significantly with the corresponding in vivo murine ED50s, with R2 = 0.6896 (p < 0.01). In the case of four elapid venoms devoid or having a very low concentration of α-neurotoxins, no inhibition of nAChR binding was observed. Within the philosophy of 3Rs (Replacement, Reduction and Refinement) in animal testing, the in vitro α-neurotoxin-nAChR binding assay can effectively substitute the mouse lethality test for toxicity and antivenom potency evaluation for neurotoxic venoms in which α-neurotoxins predominate. This will greatly reduce the number of mice used in toxicological research and antivenom production laboratories. The simpler, faster, cheaper and less variable in vitro assay should also expedite the development of pan-specific antivenoms against various medically important snakes in many parts of the world.
  7. Zulkipli MS, Dahlui M, Jamil N, Peramalah D, Wai HVC, Bulgiba A, et al.
    PLoS Negl Trop Dis, 2018 02;12(2):e0006263.
    PMID: 29415036 DOI: 10.1371/journal.pntd.0006263
    BACKGROUND: Severe dengue infection often has unpredictable clinical progressions and outcomes. Obesity may play a role in the deterioration of dengue infection due to stronger body immune responses. Several studies found that obese dengue patients have a more severe presentation with a poorer prognosis. However, the association was inconclusive due to the variation in the results of earlier studies. Therefore, we conducted a systematic review and meta-analysis to explore the relationship between obesity and dengue severity.

    METHODS: We performed a systematic search of relevant studies on Ovid (MEDLINE), EMBASE, the Cochrane Library, Web of Science, Scopus and grey literature databases. At least two authors independently conducted the literature search, selecting eligible studies, and extracting data. Meta-analysis using random-effects model was conducted to compute the pooled odds ratio with 95% confidence intervals (CI).

    FINDINGS: We obtained a total of 13,333 articles from the searches. For the final analysis, we included a total of fifteen studies among pediatric patients. Three cohort studies, two case-control studies, and one cross-sectional study found an association between obesity and dengue severity. In contrast, six cohort studies and three case-control studies found no significant relationship between obesity and dengue severity. Our meta-analysis revealed that there was 38 percent higher odds (Odds Ratio = 1.38; 95% CI:1.10, 1.73) of developing severe dengue infection among obese children compared to non-obese children. We found no heterogeneity found between studies. The differences in obesity classification, study quality, and study design do not modify the association between obesity and dengue severity.

    CONCLUSION: This review found that obesity is a risk factor for dengue severity among children. The result highlights and improves our understanding that obesity might influence the severity of dengue infection.

  8. Jayaraj VJ, Ng CW, Bulgiba A, Appannan MR, Rampal S
    PLoS Negl Trop Dis, 2022 Nov;16(11):e0010887.
    PMID: 36346816 DOI: 10.1371/journal.pntd.0010887
    Malaysia has reported 2.75 million cases and 31,485 deaths as of 30 December 2021. Underestimation remains an issue due to the underdiagnosis of mild and asymptomatic cases. We aimed to estimate the burden of COVID-19 cases in Malaysia based on an adjusted case fatality rate (aCFR). Data on reported cases and mortalities were collated from the Ministry of Health official GitHub between 1 March 2020 and 30 December 2021. We estimated the total and age-stratified monthly incidence rates, mortality rates, and aCFR. Estimated new infections were inferred from the age-stratified aCFR. The total estimated infections between 1 March 2020 and 30 December 2021 was 9,955,000-cases (95% CI: 6,626,000-18,985,000). The proportion of COVID-19 infections in ages 0-11, 12-17, 18-50, 51-65, and above 65 years were 19.9% (n = 1,982,000), 2.4% (n = 236,000), 66.1% (n = 6,577,000), 9.1% (n = 901,000), 2.6% (n = 256,000), respectively. Approximately 32.8% of the total population in Malaysia was estimated to have been infected with COVID-19 by the end of December 2021. These estimations highlight a more accurate infection burden in Malaysia. It provides the first national-level prevalence estimates in Malaysia that adjusted for underdiagnosis. Naturally acquired community immunity has increased, but approximately 68.1% of the population remains susceptible. Population estimates of the infection burden are critical to determine the need for booster doses and calibration of public health measures.
  9. Kar SK, Dwibedi B, Kerketa AS, Maharana A, Panda SS, Mohanty PC, et al.
    PLoS Negl Trop Dis, 2015 Mar;9(3):e0003583.
    PMID: 25781977 DOI: 10.1371/journal.pntd.0003583
    Although current programmes to eliminate lymphatic filariasis have made significant progress it may be necessary to use different approaches to achieve the global goal, especially where compliance has been poor and 'hot spots' of continued infection exist. In the absence of alternative drugs, the use of higher or more frequent dosing with the existing drugs needs to be explored. We examined the effect of higher and/or more frequent dosing with albendazole with a fixed 300 mg dose of diethylcarbamazine in a Wuchereria bancrofti endemic area in Odisha, India. Following screening, 104 consenting adults were randomly assigned to treatment with the standard regimen annually for 24 months (S1), or annually with increased dose (800 mg albendazole)(H1) or with increased frequency (6 monthly) with either standard (S2) or increased (H2) dose. Pre-treatment microfilaria counts (GM) ranged from 348 to 459 mf/ml. Subjects were followed using microfilaria counts, OG4C3 antigen levels and ultrasound scanning for adult worm nests. Microfilarial counts tended to decrease more rapidly with higher or more frequent dosing at all time points. At 12 months, Mf clearance was marginally greater with the high dose regimens, while by 24 months, there was a trend to higher Mf clearance in the arm with increased frequency and 800 mg of albendazole (76.9%) compared to other arms, (S1:64%, S2:69.2% & H1:73.1%). Although higher and/or more frequent dosing showed a trend towards a greater decline in antigenemia and clearance of "nests", all regimens demonstrated the potential macrofilaricidal effect of the combination. The higher doses of albendazole did not result in a greater number or more severe side effects. The alternative regimens could be useful in the later stages of existing elimination programmes or achieving elimination more rapidly in areas where programmes have yet to start.
  10. Boey K, Shiokawa K, Rajeev S
    PLoS Negl Trop Dis, 2019 08;13(8):e0007499.
    PMID: 31398190 DOI: 10.1371/journal.pntd.0007499
    BACKGROUND: The role of rodents in Leptospira epidemiology and transmission is well known worldwide. Rats are known to carry different pathogenic serovars of Leptospira spp. capable of causing disease in humans and animals. Wild rats (Rattus spp.), especially the Norway/brown rat (Rattus norvegicus) and the black rat (R. rattus), are the most important sources of Leptospira infection, as they are abundant in urban and peridomestic environments. In this study, we compiled and summarized available data in the literature on global prevalence of Leptospira exposure and infection in rats, as well as compared the global distribution of Leptospira spp. in rats with respect to prevalence, geographic location, method of detection, diversity of serogroups/serovars, and species of rat.

    METHODS: We conducted a thorough literature search using PubMed without restrictions on publication date as well as Google Scholar to manually search for other relevant articles. Abstracts were included if they described data pertaining to Leptospira spp. in rats (Rattus spp.) from any geographic region around the world, including reviews. The data extracted from the articles selected included the author(s), year of publication, geographic location, method(s) of detection used, species of rat(s), sample size, prevalence of Leptospira spp. (overall and within each rat species), and information on species, serogroups, and/or serovars of Leptospira spp. detected.

    FINDINGS: A thorough search on PubMed retrieved 303 titles. After screening the articles for duplicates and inclusion/exclusion criteria, as well as manual inclusion of relevant articles, 145 articles were included in this review. Leptospira prevalence in rats varied considerably based on geographic location, with some reporting zero prevalence in countries such as Madagascar, Tanzania, and the Faroe Islands, and others reporting as high as >80% prevalence in studies done in Brazil, India, and the Philippines. The top five countries that were reported based on number of articles include India (n = 13), Malaysia (n = 9), Brazil (n = 8), Thailand (n = 7), and France (n = 6). Methods of detecting or isolating Leptospira spp. also varied among studies. Studies among different Rattus species reported a higher Leptospira prevalence in R. norvegicus. The serovar Icterohaemorrhagiae was the most prevalent serovar reported in Rattus spp. worldwide. Additionally, this literature review provided evidence for Leptospira infection in laboratory rodent colonies within controlled environments, implicating the zoonotic potential to laboratory animal caretakers.

    CONCLUSIONS: Reports on global distribution of Leptospira infection in rats varies widely, with considerably high prevalence reported in many countries. This literature review emphasizes the need for enhanced surveillance programs using standardized methods for assessing Leptospira exposure or infection in rats. This review also demonstrated several weaknesses to the current methods of reporting the prevalence of Leptospira spp. in rats worldwide. As such, this necessitates a call for standardized protocols for the testing and reporting of such studies, especially pertaining to the diagnostic methods used. A deeper understanding of the ecology and epidemiology of Leptospira spp. in rats in urban environments is warranted. It is also pertinent for rat control programs to be proposed in conjunction with increased efforts for public awareness and education regarding leptospirosis transmission and prevention.

  11. DeBuysscher BL, de Wit E, Munster VJ, Scott D, Feldmann H, Prescott J
    PLoS Negl Trop Dis, 2013;7(1):e2024.
    PMID: 23342177 DOI: 10.1371/journal.pntd.0002024
    Nipah virus is a zoonotic pathogen that causes severe disease in humans. The mechanisms of pathogenesis are not well described. The first Nipah virus outbreak occurred in Malaysia, where human disease had a strong neurological component. Subsequent outbreaks have occurred in Bangladesh and India and transmission and disease processes in these outbreaks appear to be different from those of the Malaysian outbreak. Until this point, virtually all Nipah virus studies in vitro and in vivo, including vaccine and pathogenesis studies, have utilized a virus isolate from the original Malaysian outbreak (NiV-M). To investigate potential differences between NiV-M and a Nipah virus isolate from Bangladesh (NiV-B), we compared NiV-M and NiV-B infection in vitro and in vivo. In hamster kidney cells, NiV-M-infection resulted in extensive syncytia formation and cytopathic effects, whereas NiV-B-infection resulted in little to no morphological changes. In vivo, NiV-M-infected Syrian hamsters had accelerated virus replication, pathology and death when compared to NiV-B-infected animals. NiV-M infection also resulted in the activation of host immune response genes at an earlier time point. Pathogenicity was not only a result of direct effects of virus replication, but likely also had an immunopathogenic component. The differences observed between NiV-M and NiV-B pathogeneis in hamsters may relate to differences observed in human cases. Characterization of the hamster model for NiV-B infection allows for further research of the strain of Nipah virus responsible for the more recent outbreaks in humans. This model can be used to study NiV-B pathogenesis, transmission, and countermeasures that could be used to control outbreaks.
  12. Albert MJ, Bulach D, Alfouzan W, Izumiya H, Carter G, Alobaid K, et al.
    PLoS Negl Trop Dis, 2019 04;13(4):e0007293.
    PMID: 30986214 DOI: 10.1371/journal.pntd.0007293
    Non-typhoidal Salmonella (NTS) bacteremia is a significant cause of morbidity and mortality worldwide. It is considered to be an emerging and neglected tropical disease in Africa. We studied this in two tertiary hospitals-Al Farwaniya and Al Amiri-in Kuwait, a subtropical country, from April 2013-May 2016. NTS bacteremia was present in 30 of 53,860 (0.75%) and 31 of 290,36 (1.33%) blood cultures in the two hospitals respectively. In Al Farwaniya hospital, one-third of the patients were from some tropical developing countries of Asia. About 66% of all patients (40/61) had diarrhea, and of these, 65% had the corresponding blood serovar isolated from stool culture. A few patients had Salmonella cultured from urine. Patients were either young or old. Most of the patients had co-morbidities affecting the immune system. Two patients each died in both hospitals. The number of different serovars cultured in each hospital was 13, and most infections were due to S. Enteritidis (all sequence type [ST]) 11) and S. Typhimurium (all ST19) except in a subgroup of expatriate patients from tropical developing countries in Al Farwaniya hospital. About a quarter of the isolates were multidrug-resistant. Most patients were treated with a cephalosporin with or without other antibiotics. S. Enteritidis and S. Typhimurium isolates were typed by pulsed field-gel electrophoresis (PFGE) and a selected number of isolates were whole-genome sequenced. Up to four different clades were present by PFGE in either species. Whole-genome sequenced isolates showed antibiotic-resistance genes that showed phenotypic correlation, and in some cases, phenotypes showed absence of specific genes. Whole-genome sequenced isolates showed presence of genes that contributed to blood-stream infection. Phylogeny by core genome analysis showed a close relationship with S. Typhimurium and S. Enteritidis from other parts of the world. The uniqueness of our study included the finding of a low prevalence of infection, mortality and multidrug-resistance, a relatively high prevalence of gastrointestinal infection in patients, and the characterization of selected isolates of S. Typhimurium and S. Enteritidis serovars by whole-genome sequencing that shed light on phylogeny, virulence and resistance. Similarities with studies from developing countries especially Africa included infection in patients with co-morbidities affecting the immune system, predominance of S. Typhimurium and S. Enteritidis serovars and presence of drug-resistance in isolates.
  13. Cromwell EA, Osborne JCP, Unnasch TR, Basáñez MG, Gass KM, Barbre KA, et al.
    PLoS Negl Trop Dis, 2021 07;15(7):e0008824.
    PMID: 34319976 DOI: 10.1371/journal.pntd.0008824
    Recent evidence suggests that, in some foci, elimination of onchocerciasis from Africa may be feasible with mass drug administration (MDA) of ivermectin. To achieve continental elimination of transmission, mapping surveys will need to be conducted across all implementation units (IUs) for which endemicity status is currently unknown. Using boosted regression tree models with optimised hyperparameter selection, we estimated environmental suitability for onchocerciasis at the 5 × 5-km resolution across Africa. In order to classify IUs that include locations that are environmentally suitable, we used receiver operating characteristic (ROC) analysis to identify an optimal threshold for suitability concordant with locations where onchocerciasis has been previously detected. This threshold value was then used to classify IUs (more suitable or less suitable) based on the location within the IU with the largest mean prediction. Mean estimates of environmental suitability suggest large areas across West and Central Africa, as well as focal areas of East Africa, are suitable for onchocerciasis transmission, consistent with the presence of current control and elimination of transmission efforts. The ROC analysis identified a mean environmental suitability index of 0·71 as a threshold to classify based on the location with the largest mean prediction within the IU. Of the IUs considered for mapping surveys, 50·2% exceed this threshold for suitability in at least one 5 × 5-km location. The formidable scale of data collection required to map onchocerciasis endemicity across the African continent presents an opportunity to use spatial data to identify areas likely to be suitable for onchocerciasis transmission. National onchocerciasis elimination programmes may wish to consider prioritising these IUs for mapping surveys as human resources, laboratory capacity, and programmatic schedules may constrain survey implementation, and possibly delaying MDA initiation in areas that would ultimately qualify.
  14. Vincent AT, Schiettekatte O, Goarant C, Neela VK, Bernet E, Thibeaux R, et al.
    PLoS Negl Trop Dis, 2019 05;13(5):e0007270.
    PMID: 31120895 DOI: 10.1371/journal.pntd.0007270
    The causative agents of leptospirosis are responsible for an emerging zoonotic disease worldwide. One of the major routes of transmission for leptospirosis is the natural environment contaminated with the urine of a wide range of reservoir animals. Soils and surface waters also host a high diversity of non-pathogenic Leptospira and species for which the virulence status is not clearly established. The genus Leptospira is currently divided into 35 species classified into three phylogenetic clusters, which supposedly correlate with the virulence of the bacteria. In this study, a total of 90 Leptospira strains isolated from different environments worldwide including Japan, Malaysia, New Caledonia, Algeria, mainland France, and the island of Mayotte in the Indian Ocean were sequenced. A comparison of average nucleotide identity (ANI) values of genomes of the 90 isolates and representative genomes of known species revealed 30 new Leptospira species. These data also supported the existence of two clades and 4 subclades. To avoid classification that strongly implies assumption on the virulence status of the lineages, we called them P1, P2, S1, S2. One of these subclades has not yet been described and is composed of Leptospira idonii and 4 novel species that are phylogenetically related to the saprophytes. We then investigated genome diversity and evolutionary relationships among members of the genus Leptospira by studying the pangenome and core gene sets. Our data enable the identification of genome features, genes and domains that are important for each subclade, thereby laying the foundation for refining the classification of this complex bacterial genus. We also shed light on atypical genomic features of a group of species that includes the species often associated with human infection, suggesting a specific and ongoing evolution of this group of species that will require more attention. In conclusion, we have uncovered a massive species diversity and revealed a novel subclade in environmental samples collected worldwide and we have redefined the classification of species in the genus. The implication of several new potentially infectious Leptospira species for human and animal health remains to be determined but our data also provide new insights into the emergence of virulence in the pathogenic species.
  15. Shettima A, Ishak IH, Lau B, Abu Hasan H, Miswan N, Othman N
    PLoS Negl Trop Dis, 2023 Sep;17(9):e0011604.
    PMID: 37721966 DOI: 10.1371/journal.pntd.0011604
    Synthetic insecticides are the primary vector control method used globally. However, the widespread use of insecticides is a major cause of insecticide-resistance in mosquitoes. Hence, this study aimed at elucidating permethrin and temephos-resistant protein expression profiles in Ae. aegypti using quantitative proteomics. In this study, we evaluated the susceptibility of Ae. aegypti from Penang Island dengue hotspot and non-hotspot against 0.75% permethrin and 31.25 mg/l temephos using WHO bioassay method. Protein extracts from the mosquitoes were then analysed using LC-ESI-MS/MS for protein identification and quantification via label-free quantitative proteomics (LFQ). Next, Perseus 1.6.14.0 statistical software was used to perform differential protein expression analysis using ANOVA and Student's t-test. The t-test selected proteins with≥2.0-fold change (FC) and ≥2 unique peptides for gene expression validation via qPCR. Finally, STRING software was used for functional ontology enrichment and protein-protein interactions (PPI). The WHO bioassay showed resistance with 28% and 53% mortalities in adult mosquitoes exposed to permethrin from the hotspot and non-hotspot areas. Meanwhile, the susceptibility of Ae. aegypti larvae revealed high resistance to temephos in hotspot and non-hotspot regions with 80% and 91% mortalities. The LFQ analyses revealed 501 and 557 (q-value <0.05) differentially expressed proteins in adults and larvae Ae. aegypti. The t-test showed 114 upregulated and 74 downregulated proteins in adult resistant versus laboratory strains exposed to permethrin. Meanwhile, 13 upregulated and 105 downregulated proteins were observed in larvae resistant versus laboratory strains exposed to temephos. The t-test revealed the upregulation of sodium/potassium-dependent ATPase β2 in adult permethrin resistant strain, H15 domain-containing protein, 60S ribosomal protein, and PB protein in larvae temephos resistant strain. The downregulation of troponin I, enolase phosphatase E1, glucosidase 2β was observed in adult permethrin resistant strain and tubulin β chain in larvae temephos resistant strain. Furthermore, the gene expression by qPCR revealed similar gene expression patterns in the above eight differentially expressed proteins. The PPI of differentially expressed proteins showed a p-value at <1.0 x 10-16 in permethrin and temephos resistant Ae. aegypti. Significantly enriched pathways in differentially expressed proteins revealed metabolic pathways, oxidative phosphorylation, carbon metabolism, biosynthesis of amino acids, glycolysis, and citrate cycle. In conclusion, this study has shown differentially expressed proteins and highlighted upregulated and downregulated proteins associated with insecticide resistance in Ae. aegypti. The validated differentially expressed proteins merit further investigation as a potential protein marker to monitor and predict insecticide resistance in field Ae. aegypti. The LC-MS/MS data were submitted into the MASSIVE database with identifier no: MSV000089259.
  16. Mohan A, Podin Y, Tai N, Chieng CH, Rigas V, Machunter B, et al.
    PLoS Negl Trop Dis, 2017 Jun;11(6):e0005650.
    PMID: 28599008 DOI: 10.1371/journal.pntd.0005650
    BACKGROUND: Melioidosis is a serious, and potentially fatal community-acquired infection endemic to northern Australia and Southeast Asia, including Sarawak, Malaysia. The disease, caused by the usually intrinsically aminoglycoside-resistant Burkholderia pseudomallei, most commonly affects adults with predisposing risk factors. There are limited data on pediatric melioidosis in Sarawak.

    METHODS: A part prospective, part retrospective study of children aged <15 years with culture-confirmed melioidosis was conducted in the 3 major public hospitals in Central Sarawak between 2009 and 2014. We examined epidemiological, clinical and microbiological characteristics.

    FINDINGS: Forty-two patients were recruited during the 6-year study period. The overall annual incidence was estimated to be 4.1 per 100,000 children <15 years, with marked variation between districts. No children had pre-existing medical conditions. Twenty-three (55%) had disseminated disease, 10 (43%) of whom died. The commonest site of infection was the lungs, which occurred in 21 (50%) children. Other important sites of infection included lymph nodes, spleen, joints and lacrimal glands. Seven (17%) children had bacteremia with no overt focus of infection. Delays in diagnosis and in melioidosis-appropriate antibiotic treatment were observed in nearly 90% of children. Of the clinical isolates tested, 35/36 (97%) were susceptible to gentamicin. Of these, all 11 isolates that were genotyped were of a single multi-locus sequence type, ST881, and possessed the putative B. pseudomallei virulence determinants bimABp, fhaB3, and the YLF gene cluster.

    CONCLUSIONS: Central Sarawak has a very high incidence of pediatric melioidosis, caused predominantly by gentamicin-susceptible B. pseudomallei strains. Children frequently presented with disseminated disease and had an alarmingly high death rate, despite the absence of any apparent predisposing risk factor.

  17. Srisawat N, Gubler DJ, Pangestu T, Limothai U, Thisyakorn U, Ismail Z, et al.
    PLoS Negl Trop Dis, 2024 Mar;18(3):e0012060.
    PMID: 38551892 DOI: 10.1371/journal.pntd.0012060
    The 6th Asia Dengue Summit (ADS) themed "Road Map to Zero Dengue Death" was held in Thailand from 15th-16th June 2023. The summit was hosted by Tropical Medicine Cluster, Chulalongkorn University, Bangkok, Thailand in conjunction with Queen Saovabha Memorial Institute, The Thai Red Cross Society; Faculty of Tropical Medicine, Mahidol University; and the Ministry of Public Health. The 6th ADS was convened by Asia Dengue Voice and Action (ADVA); Global Dengue and Aedes Transmitted Diseases Consortium (GDAC); Southeast Asian Ministers of Education Tropical Medicine and Public Health Network (SEAMEO TROPMED); Fondation Mérieux (FMx) and the International Society for Neglected Tropical Diseases (ISNTD). Dengue experts from academia and research, and representatives from the Ministries of Health, Regional and Global World Health Organization (WHO) and International Vaccine Institute (IVI) participated in the three-day summit. With more than 51 speakers and 451 delegates from over 24 countries, 10 symposiums, and 2 full days, the 6th ADS highlighted the growing threat of dengue and its antigenic evolution, flagged the urgent need to overcome vaccine hesitancy and misinformation crisis, and focused on dengue control policies, newer diagnostics, therapeutics and vaccines, travel-associated dengue, and strategies to improve community involvement.
  18. Tan PC, Soe MZ, Si Lay K, Wang SM, Sekaran SD, Omar SZ
    PLoS Negl Trop Dis, 2012;6(5):e1637.
    PMID: 22590658 DOI: 10.1371/journal.pntd.0001637
    Dengue is the most prevalent mosquito borne infection worldwide. Vertical transmissions after maternal dengue infection to the fetus and pregnancy losses in relation to dengue illness have been reported. The relationship of dengue to miscarriage is not known.
  19. Tay ST, Mohamed Zan HA, Lim YA, Ngui R
    PLoS Negl Trop Dis, 2013;7(8):e2341.
    PMID: 23936576 DOI: 10.1371/journal.pntd.0002341
    Limited data is available on the current status of scrub typhus infection in the aboriginal population in Malaysia. This study was aimed to provide recent data on the degree of exposure of 280 individuals from seven aboriginal subgroups to Orientia tsutsugamushi (causative agent of scrub typhus) in West Malaysia. The environment, socioeconomic and behavioural risk factors associated with the disease were also investigated.
  20. Schnetterle M, Gorgé O, Nolent F, Boughammoura A, Sarilar V, Vigier C, et al.
    PLoS Negl Trop Dis, 2021 Feb;15(2):e0008913.
    PMID: 33592059 DOI: 10.1371/journal.pntd.0008913
    BACKGROUND: Melioidosis is an endemic disease in southeast Asia and northern Australia caused by the saprophytic bacteria Burkholderia pseudomallei, with a high mortality rate. The clinical presentation is multifaceted, with symptoms ranging from acute septicemia to multiple chronic abscesses. Here, we report a chronic case of melioidosis in a patient who lived in Malaysia in the 70s and was suspected of contracting tuberculosis. Approximately 40 years later, in 2014, he was diagnosed with pauci-symptomatic melioidosis during a routine examination. Four strains were isolated from a single sample. They showed divergent morphotypes and divergent antibiotic susceptibility, with some strains showing resistance to trimethoprim-sulfamethoxazole and fluoroquinolones. In 2016, clinical samples were still positive for B. pseudomallei, and only one type of strain, showing atypical resistance to meropenem, was isolated.

    PRINCIPAL FINDINGS: We performed whole genome sequencing and RT-qPCR analysis on the strains isolated during this study to gain further insights into their differences. We thus identified two types of resistance mechanisms in these clinical strains. The first one was an adaptive and transient mechanism that disappeared during the course of laboratory sub-cultures; the second was a mutation in the efflux pump regulator amrR, associated with the overexpression of the related transporter.

    CONCLUSION: The development of such mechanisms may have a clinical impact on antibiotic treatment. Indeed, their transient nature could lead to an undiagnosed resistance. Efflux overexpression due to mutation leads to an important multiple resistance, reducing the effectiveness of antibiotics during treatment.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links