Displaying publications 41 - 60 of 163 in total

Abstract:
Sort:
  1. Lam JY, Low GK, Chee HY
    PLoS Negl Trop Dis, 2020 02;14(2):e0008074.
    PMID: 32049960 DOI: 10.1371/journal.pntd.0008074
    BACKGROUND: Leptospirosis is often difficult to diagnose because of its nonspecific symptoms. The drawbacks of direct isolation and serological tests have led to the increased development of nucleic acid-based assays, which are more rapid and accurate. A meta-analysis was performed to evaluate the diagnostic accuracy of genetic markers for the detection of Leptospira in clinical samples.

    METHODOLOGY AND PRINCIPLE FINDINGS: A literature search was performed in Scopus, PubMed, MEDLINE and non-indexed citations (via Ovid) by using suitable keyword combinations. Studies evaluating the performance of nucleic acid assays targeting leptospire genes in human or animal clinical samples against a reference test were included. Of the 1645 articles identified, 42 eligible studies involving 7414 samples were included in the analysis. The diagnostic performance of nucleic acid assays targeting the rrs, lipL32, secY and flaB genes was pooled and analyzed. Among the genetic markers analyzed, the secY gene showed the highest diagnostic accuracy measures, with a pooled sensitivity of 0.56 (95% CI: 0.50-0.63), a specificity of 0.98 (95% CI: 0.97-0.98), a diagnostic odds ratio of 46.16 (95% CI: 6.20-343.49), and an area under the curve of summary receiver operating characteristics curves of 0.94. Nevertheless, a high degree of heterogeneity was observed in this meta-analysis. Therefore, the present findings here should be interpreted with caution.

    CONCLUSION: The diagnostic accuracies of the studies examined for each genetic marker showed a significant heterogeneity. The secY gene exhibited higher diagnostic accuracy measures compared with other genetic markers, such as lipL32, flaB, and rrs, but the difference was not significant. Thus, these genetic markers had no significant difference in diagnostic accuracy for leptospirosis. Further research into these genetic markers is warranted.

  2. Andrew A, Navien TN, Yeoh TS, Citartan M, Mangantig E, Sum MSH, et al.
    PLoS Negl Trop Dis, 2022 Feb;16(2):e0010152.
    PMID: 35120141 DOI: 10.1371/journal.pntd.0010152
    BACKGROUND: Chikungunya virus (CHIKV) causes febrile illnesses and has always been misdiagnosed as other viral infections, such as dengue and Zika; thus, a laboratory test is needed. Serological tests are commonly used to diagnose CHIKV infection, but their accuracy is questionable due to varying degrees of reported sensitivities and specificities. Herein, we conducted a systematic review and meta-analysis to evaluate the diagnostic accuracy of serological tests currently available for CHIKV.

    METHODOLOGY AND PRINCIPAL FINDINGS: A literature search was performed in PubMed, CINAHL Complete, and Scopus databases from the 1st December 2020 until 22nd April 2021. Studies reporting sensitivity and specificity of serological tests against CHIKV that used whole blood, serum, or plasma were included. QUADAS-2 tool was used to assess the risk of bias and applicability, while R software was used for statistical analyses. Thirty-five studies were included in this meta-analysis; 72 index test data were extracted and analysed. Rapid and ELISA-based antigen tests had a pooled sensitivity of 85.8% and 82.2%, respectively, and a pooled specificity of 96.1% and 96.0%, respectively. According to our meta-analysis, antigen detection tests serve as a good diagnostic test for acute-phase samples. The IgM detection tests had more than 90% diagnostic accuracy for ELISA-based tests, immunofluorescence assays, in-house developed tests, and samples collected after seven days of symptom onset. Conversely, low sensitivity was found for the IgM rapid test (42.3%), commercial test (78.6%), and for samples collected less than seven of symptom onset (26.2%). Although IgM antibodies start to develop on day 2 of CHIKV infection, our meta-analysis revealed that the IgM detection test is not recommended for acute-phase samples. The diagnostic performance of the IgG detection tests was more than 93% regardless of the test formats and whether the test was commercially available or developed in-house. The use of samples collected after seven days of symptom onset for the IgG detection test suggests that IgG antibodies can be detected in the convalescent-phase samples. Additionally, we evaluated commercial IgM and IgG tests for CHIKV and found that ELISA-based and IFA commercial tests manufactured by Euroimmun (Lübeck, Germany), Abcam (Cambridge, UK), and Inbios (Seattle, WA) had diagnostic accuracy of above 90%, which was similar to the manufacturers' claim.

    CONCLUSION: Based on our meta-analysis, antigen or antibody-based serological tests can be used to diagnose CHIKV reliably, depending on the time of sample collection. The antigen detection tests serve as a good diagnostic test for samples collected during the acute phase (≤7 days post symptom onset) of CHIKV infection. Likewise, IgM and IgG detection tests can be used for samples collected in the convalescent phase (>7 days post symptom onset). In correlation to the clinical presentation of the patients, the combination of the IgM and IgG tests can differentiate recent and past infections.

  3. Won KY, Gass K, Biamonte M, Dagne DA, Ducker C, Hanna C, et al.
    PLoS Negl Trop Dis, 2021 11;15(11):e0009968.
    PMID: 34780503 DOI: 10.1371/journal.pntd.0009968
    As lymphatic filariasis (LF) programs move closer to established targets for validation elimination of LF as a public health problem, diagnostic tools capable of supporting the needs of the programs are critical for success. Known limitations of existing diagnostic tools make it challenging to have confidence that program endpoints have been achieved. In 2019, the World Health Organization (WHO) established a Diagnostic Technical Advisory Group (DTAG) for Neglected Tropical Diseases tasked with prioritizing diagnostic needs including defining use-cases and target product profiles (TPPs) for needed tools. Subsequently, disease-specific DTAG subgroups, including one focused on LF, were established to develop TPPs and use-case analyses to be used by product developers. Here, we describe the development of two priority TPPs for LF diagnostics needed for making decisions for stopping mass drug administration (MDA) of a triple drug regimen and surveillance. Utilizing the WHO core TPP development process as the framework, the LF subgroup convened to discuss and determine attributes required for each use case. TPPs considered the following parameters: product use, design, performance, product configuration and cost, and access and equity. Version 1.0 TPPs for two use cases were published by WHO on 12 March 2021 within the WHO Global Observatory on Health Research and Development. A common TPP characteristic that emerged in both use cases was the need to identify new biomarkers that would allow for greater precision in program delivery. As LF diagnostic tests are rarely used for individual clinical diagnosis, it became apparent that reliance on population-based surveys for decision making requires consideration of test performance in the context of such surveys. In low prevalence settings, the number of false positive test results may lead to unnecessary continuation or resumption of MDA, thus wasting valuable resources and time. Therefore, highly specific diagnostic tools are paramount when used to measure low thresholds. The TPP process brought to the forefront the importance of linking use case, program platform and diagnostic performance characteristics when defining required criteria for diagnostic tools.
  4. Ramli SR, Moreira GMSG, Zantow J, Goris MGA, Nguyen VK, Novoselova N, et al.
    PLoS Negl Trop Dis, 2019 01;13(1):e0007131.
    PMID: 30677033 DOI: 10.1371/journal.pntd.0007131
    BACKGROUND: Leptospirosis is the most common zoonotic disease worldwide. The diagnostic performance of a serological test for human leptospirosis is mainly influenced by the antigen used in the test assay. An ideal serological test should cover all serovars of pathogenic leptospires with high sensitivity and specificity and use reagents that are relatively inexpensive to produce and can be used in tropical climates. Peptide-based tests fulfil at least the latter two requirements, and ORFeome phage display has been successfully used to identify immunogenic peptides from other pathogens.

    METHODOLOGY/PRINCIPAL FINDINGS: Two ORFeome phage display libraries of the entire Leptospira spp. genomes from five local strains isolated in Malaysia and seven WHO reference strains were constructed. Subsequently, 18 unique Leptospira peptides were identified in a screen using a pool of sera from patients with acute leptospirosis. Five of these were validated by titration ELISA using different pools of patient or control sera. The diagnostic performance of these five peptides was then assessed against 16 individual sera from patients with acute leptospirosis and 16 healthy donors and was compared to that of two recombinant reference proteins from L. interrogans. This analysis revealed two peptides (SIR16-D1 and SIR16-H1) from the local isolates with good accuracy for the detection of acute leptospirosis (area under the ROC curve: 0.86 and 0.78, respectively; sensitivity: 0.88 and 0.94; specificity: 0.81 and 0.69), which was close to that of the reference proteins LipL32 and Loa22 (area under the ROC curve: 0.91 and 0.80; sensitivity: 0.94 and 0.81; specificity: 0.75 and 0.75).

    CONCLUSIONS/SIGNIFICANCE: This analysis lends further support for using ORFeome phage display to identify pathogen-associated immunogenic peptides, and it suggests that this technique holds promise for the development of peptide-based diagnostics for leptospirosis and, possibly, of vaccines against this pathogen.

  5. Ahmed AM, Pinheiro MM, Divis PC, Siner A, Zainudin R, Wong IT, et al.
    PLoS Negl Trop Dis, 2014 Aug;8(8):e3086.
    PMID: 25121807 DOI: 10.1371/journal.pntd.0003086
    Emerging pathogens undermine initiatives to control the global health impact of infectious diseases. Zoonotic malaria is no exception. Plasmodium knowlesi, a malaria parasite of Southeast Asian macaques, has entered the human population. P. knowlesi, like Plasmodium falciparum, can reach high parasitaemia in human infections, and the World Health Organization guidelines for severe malaria list hyperparasitaemia among the measures of severe malaria in both infections. Not all patients with P. knowlesi infections develop hyperparasitaemia, and it is important to determine why. Between isolate variability in erythrocyte invasion, efficiency seems key. Here we investigate the idea that particular alleles of two P. knowlesi erythrocyte invasion genes, P. knowlesi normocyte binding protein Pknbpxa and Pknbpxb, influence parasitaemia and human disease progression. Pknbpxa and Pknbpxb reference DNA sequences were generated from five geographically and temporally distinct P. knowlesi patient isolates. Polymorphic regions of each gene (approximately 800 bp) were identified by haplotyping 147 patient isolates at each locus. Parasitaemia in the study cohort was associated with markers of disease severity including liver and renal dysfunction, haemoglobin, platelets and lactate, (r = ≥ 0.34, p =  <0.0001 for all). Seventy-five and 51 Pknbpxa and Pknbpxb haplotypes were resolved in 138 (94%) and 134 (92%) patient isolates respectively. The haplotypes formed twelve Pknbpxa and two Pknbpxb allelic groups. Patients infected with parasites with particular Pknbpxa and Pknbpxb alleles within the groups had significantly higher parasitaemia and other markers of disease severity. Our study strongly suggests that P. knowlesi invasion gene variants contribute to parasite virulence. We focused on two invasion genes, and we anticipate that additional virulent loci will be identified in pathogen genome-wide studies. The multiple sustained entries of this diverse pathogen into the human population must give cause for concern to malaria elimination strategists in the Southeast Asian region.
  6. Winskill P, Carvalho DO, Capurro ML, Alphey L, Donnelly CA, McKemey AR
    PLoS Negl Trop Dis, 2015 Nov;9(11):e0004156.
    PMID: 26554922 DOI: 10.1371/journal.pntd.0004156
    BACKGROUND: Aedes aegypti, the principal vector of dengue fever, have been genetically engineered for use in a sterile insect control programme. To improve our understanding of the dispersal ecology of mosquitoes and to inform appropriate release strategies of 'genetically sterile' male Aedes aegypti detailed knowledge of the dispersal ability of the released insects is needed.

    METHODOLOGY/PRINCIPAL FINDINGS: The dispersal ability of released 'genetically sterile' male Aedes aegypti at a field site in Brazil has been estimated. Dispersal kernels embedded within a generalized linear model framework were used to analyse data collected from three large scale mark release recapture studies. The methodology has been applied to previously published dispersal data to compare the dispersal ability of 'genetically sterile' male Aedes aegypti in contrasting environments. We parameterised dispersal kernels and estimated the mean distance travelled for insects in Brazil: 52.8 m (95% CI: 49.9 m, 56.8 m) and Malaysia: 58.0 m (95% CI: 51.1 m, 71.0 m).

    CONCLUSIONS/SIGNIFICANCE: Our results provide specific, detailed estimates of the dispersal characteristics of released 'genetically sterile' male Aedes aegypti in the field. The comparative analysis indicates that despite differing environments and recapture rates, key features of the insects' dispersal kernels are conserved across the two studies. The results can be used to inform both risk assessments and release programmes using 'genetically sterile' male Aedes aegypti.

  7. Shepard DS, Undurraga EA, Halasa YA
    PLoS Negl Trop Dis, 2013;7(2):e2055.
    PMID: 23437406 DOI: 10.1371/journal.pntd.0002055
    BACKGROUND: Dengue poses a substantial economic and disease burden in Southeast Asia (SEA). Quantifying this burden is critical to set policy priorities and disease-control strategies.

    METHODS AND FINDINGS: We estimated the economic and disease burden of dengue in 12 countries in SEA: Bhutan, Brunei, Cambodia, East-Timor, Indonesia, Laos, Malaysia, Myanmar, Philippines, Singapore, Thailand, and Viet Nam. We obtained reported cases from multiple sources--surveillance data, World Health Organization (WHO), and published studies--and adjusted for underreporting using expansion factors from previous literature. We obtained unit costs per episode through a systematic literature review, and completed missing data using linear regressions. We excluded costs such as prevention and vector control, and long-term sequelae of dengue. Over the decade of 2001-2010, we obtained an annual average of 2.9 million (m) dengue episodes and 5,906 deaths. The annual economic burden (with 95% certainty levels) was US$950m (US$610m-US$1,384m) or about US$1.65 (US$1.06-US$2.41) per capita. The annual number of disability-adjusted life years (DALYs), based on the original 1994 definition, was 214,000 (120,000-299,000), which is equivalent to 372 (210-520) DALYs per million inhabitants.

    CONCLUSION: Dengue poses a substantial economic and disease burden in SEA with a DALY burden per million inhabitants in the region. This burden is higher than that of 17 other conditions, including Japanese encephalitis, upper respiratory infections, and hepatitis B.

  8. Sapsutthipas S, Leong PK, Akesowan S, Pratanaphon R, Tan NH, Ratanabanangkoon K
    PLoS Negl Trop Dis, 2015 Mar;9(3):e0003609.
    PMID: 25774998 DOI: 10.1371/journal.pntd.0003609
    Snake envenomation has been estimated to affect 1.8 million people annually with about 94,000 deaths mostly in poor tropical countries. Specific antivenoms are the only rational and effective therapy for these cases. Efforts are being made to produce effective, affordable and sufficient antivenoms for these victims. The immunization process, which has rarely been described in detail, is one step that needs to be rigorously studied and improved especially with regard to the production of polyspecific antisera. The polyspecific nature of therapeutic antivenom could obviate the need to identify the culprit snake species. The aim of this study was to produce potent polyspecific antisera against 3 medically important vipers of Thailand and its neighboring countries, namely Cryptelytrops albolabris "White lipped pit viper" (CA), Calleoselasma rhodostoma "Malayan pit viper" (CR), and Daboia siamensis "Russell's viper" (DS). Four horses were immunized with a mixture of the 3 viper venoms using the 'low dose, low volume multi-site' immunization protocol. The antisera showed rapid rise in ELISA titers against the 3 venoms and reached plateau at about the 8th week post-immunization. The in vivo neutralization potency (P) of the antisera against CA, CR and DS venoms was 10.40, 2.42 and 0.76 mg/ml, respectively and was much higher than the minimal potency limits set by Queen Soavabha Memorial Institute (QSMI). The corresponding potency values for the QSMI monospecific antisera against CA, CR and DS venoms were 7.28, 3.12 and 1.50 mg/ml, respectively. The polyspecific antisera also effectively neutralized the procoagulant, hemorrhagic, necrotic and nephrotoxic activities of the viper venoms. This effective immunization protocol should be useful in the production of potent polyspecific antisera against snake venoms, and equine antisera against tetanus, diphtheria or rabies.
  9. Nally JE, Arent Z, Bayles DO, Hornsby RL, Gilmore C, Regan S, et al.
    PLoS Negl Trop Dis, 2016 12;10(12):e0005174.
    PMID: 27935961 DOI: 10.1371/journal.pntd.0005174
    The greater white-toothed shrew (Crocidura russula) is an invasive mammalian species that was first recorded in Ireland in 2007. It currently occupies an area of approximately 7,600 km2 on the island. C. russula is normally distributed in Northern Africa and Western Europe, and was previously absent from the British Isles. Whilst invasive species can have dramatic and rapid impacts on faunal and floral communities, they may also be carriers of pathogens facilitating disease transmission in potentially naive populations. Pathogenic leptospires are endemic in Ireland and a significant cause of human and animal disease. From 18 trapped C. russula, 3 isolates of Leptospira were cultured. However, typing of these isolates by standard serological reference methods was negative, and suggested an, as yet, unidentified serovar. Sequence analysis of 16S ribosomal RNA and secY indicated that these novel isolates belong to Leptospira alstonii, a unique pathogenic species of which only 7 isolates have been described to date. Earlier isolations were limited geographically to China, Japan and Malaysia, and this leptospiral species had not previously been cultured from mammals. Restriction enzyme analysis (REA) further confirms the novelty of these strains since no similar patterns were observed with a reference database of leptospires. As with other pathogenic Leptospira species, these isolates contain lipL32 and do not grow in the presence of 8-azagunaine; however no evidence of disease was apparent after experimental infection of hamsters. These isolates are genetically related to L. alstonii but have a novel REA pattern; they represent a new serovar which we designate as serovar Room22. This study demonstrates that invasive mammalian species act as bridge vectors of novel zoonotic pathogens such as Leptospira.
  10. Ngui R, Lim YA, Traub R, Mahmud R, Mistam MS
    PLoS Negl Trop Dis, 2012;6(2):e1522.
    PMID: 22347515 DOI: 10.1371/journal.pntd.0001522
    Currently, information on species-specific hookworm infection is unavailable in Malaysia and is restricted worldwide due to limited application of molecular diagnostic tools. Given the importance of accurate identification of hookworms, this study was conducted as part of an ongoing molecular epidemiological investigation aimed at providing the first documented data on species-specific hookworm infection, associated risk factors and the role of domestic animals as reservoirs for hookworm infections in endemic communities of Malaysia.
  11. Mohd-Zaki AH, Brett J, Ismail E, L'Azou M
    PLoS Negl Trop Dis, 2014;8(11):e3159.
    PMID: 25375211 DOI: 10.1371/journal.pntd.0003159
    A literature survey and analysis was conducted to describe the epidemiology of dengue disease in Malaysia between 2000 and 2012. Published literature was searched for epidemiological studies of dengue disease, using specific search strategies for each electronic database; 237 relevant data sources were identified, 28 of which fulfilled the inclusion criteria. The epidemiology of dengue disease in Malaysia was characterized by a non-linear increase in the number of reported cases from 7,103 in 2000 to 46,171 in 2010, and a shift in the age range predominance from children toward adults. The overall increase in dengue disease was accompanied by a rise in the number, but not the proportion, of severe cases. The dominant circulating dengue virus serotypes changed continually over the decade and differed between states. Several gaps in epidemiological knowledge were identified; in particular, studies of regional differences, age-stratified seroprevalence, and hospital admissions.

    PROTOCOL REGISTRATION: PROSPERO #CRD42012002293.

  12. Al-Delaimy AK, Al-Mekhlafi HM, Nasr NA, Sady H, Atroosh WM, Nashiry M, et al.
    PLoS Negl Trop Dis, 2014 Aug;8(8):e3074.
    PMID: 25144662 DOI: 10.1371/journal.pntd.0003074
    This cross-sectional study aimed to investigate the current prevalence and risk factors associated with intestinal polyparasitism (the concurrent infection with multiple intestinal parasite species) among Orang Asli school children in the Lipis district of Pahang state, Malaysia.
  13. Shearer FM, Huang Z, Weiss DJ, Wiebe A, Gibson HS, Battle KE, et al.
    PLoS Negl Trop Dis, 2016 Aug;10(8):e0004915.
    PMID: 27494405 DOI: 10.1371/journal.pntd.0004915
    BACKGROUND: Infection by the simian malaria parasite, Plasmodium knowlesi, can lead to severe and fatal disease in humans, and is the most common cause of malaria in parts of Malaysia. Despite being a serious public health concern, the geographical distribution of P. knowlesi malaria risk is poorly understood because the parasite is often misidentified as one of the human malarias. Human cases have been confirmed in at least nine Southeast Asian countries, many of which are making progress towards eliminating the human malarias. Understanding the geographical distribution of P. knowlesi is important for identifying areas where malaria transmission will continue after the human malarias have been eliminated.

    METHODOLOGY/PRINCIPAL FINDINGS: A total of 439 records of P. knowlesi infections in humans, macaque reservoir and vector species were collated. To predict spatial variation in disease risk, a model was fitted using records from countries where the infection data coverage is high. Predictions were then made throughout Southeast Asia, including regions where infection data are sparse. The resulting map predicts areas of high risk for P. knowlesi infection in a number of countries that are forecast to be malaria-free by 2025 (Malaysia, Cambodia, Thailand and Vietnam) as well as countries projected to be eliminating malaria (Myanmar, Laos, Indonesia and the Philippines).

    CONCLUSIONS/SIGNIFICANCE: We have produced the first map of P. knowlesi malaria risk, at a fine-scale resolution, to identify priority areas for surveillance based on regions with sparse data and high estimated risk. Our map provides an initial evidence base to better understand the spatial distribution of this disease and its potential wider contribution to malaria incidence. Considering malaria elimination goals, areas for prioritised surveillance are identified.

  14. Jayaraj VJ, Ng CW, Bulgiba A, Appannan MR, Rampal S
    PLoS Negl Trop Dis, 2022 Nov;16(11):e0010887.
    PMID: 36346816 DOI: 10.1371/journal.pntd.0010887
    Malaysia has reported 2.75 million cases and 31,485 deaths as of 30 December 2021. Underestimation remains an issue due to the underdiagnosis of mild and asymptomatic cases. We aimed to estimate the burden of COVID-19 cases in Malaysia based on an adjusted case fatality rate (aCFR). Data on reported cases and mortalities were collated from the Ministry of Health official GitHub between 1 March 2020 and 30 December 2021. We estimated the total and age-stratified monthly incidence rates, mortality rates, and aCFR. Estimated new infections were inferred from the age-stratified aCFR. The total estimated infections between 1 March 2020 and 30 December 2021 was 9,955,000-cases (95% CI: 6,626,000-18,985,000). The proportion of COVID-19 infections in ages 0-11, 12-17, 18-50, 51-65, and above 65 years were 19.9% (n = 1,982,000), 2.4% (n = 236,000), 66.1% (n = 6,577,000), 9.1% (n = 901,000), 2.6% (n = 256,000), respectively. Approximately 32.8% of the total population in Malaysia was estimated to have been infected with COVID-19 by the end of December 2021. These estimations highlight a more accurate infection burden in Malaysia. It provides the first national-level prevalence estimates in Malaysia that adjusted for underdiagnosis. Naturally acquired community immunity has increased, but approximately 68.1% of the population remains susceptible. Population estimates of the infection burden are critical to determine the need for booster doses and calibration of public health measures.
  15. Hunsperger EA, Yoksan S, Buchy P, Nguyen VC, Sekaran SD, Enria DA, et al.
    PLoS Negl Trop Dis, 2014 Oct;8(10):e3171.
    PMID: 25330157 DOI: 10.1371/journal.pntd.0003171
    Commercially available diagnostic test kits for detection of dengue virus (DENV) non-structural protein 1 (NS1) and anti-DENV IgM were evaluated for their sensitivity and specificity and other performance characteristics by a diagnostic laboratory network developed by World Health Organization (WHO), the UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR) and the Pediatric Dengue Vaccine Initiative (PDVI). Each network laboratory contributed characterized serum specimens for the panels used in the evaluation. Microplate enzyme-linked immunosorbent assay (ELISA) and rapid diagnostic test (RDT formats) were represented by the kits. Each ELISA was evaluated by 2 laboratories and RDTs were evaluated by at least 3 laboratories. The reference tests for IgM anti-DENV were laboratory developed assays produced by the Armed Forces Research Institute for Medical Science (AFRIMS) and the Centers for Disease Control and Prevention (CDC), and the NS1 reference test was reverse transcriptase polymerase chain reaction (RT-PCR). Results were analyzed to determine sensitivity, specificity, inter-laboratory and inter-reader agreement, lot-to-lot variation and ease-of-use. NS1 ELISA sensitivity was 60-75% and specificity 71-80%; NS1 RDT sensitivity was 38-71% and specificity 76-80%; the IgM anti-DENV RDTs sensitivity was 30-96%, with a specificity of 86-92%, and IgM anti-DENV ELISA sensitivity was 96-98% and specificity 78-91%. NS1 tests were generally more sensitive in specimens from the acute phase of dengue and in primary DENV infection, whereas IgM anti-DENV tests were less sensitive in secondary DENV infections. The reproducibility of the NS1 RDTs ranged from 92-99% and the IgM anti-DENV RDTs from 88-94%.
  16. Chaisakul J, Alsolaiss J, Charoenpitakchai M, Wiwatwarayos K, Sookprasert N, Harrison RA, et al.
    PLoS Negl Trop Dis, 2019 10;13(10):e0007338.
    PMID: 31644526 DOI: 10.1371/journal.pntd.0007338
    BACKGROUND: Daboia siamensis (Eastern Russell's viper) is a medically important snake species found widely distributed across Southeast Asia. Envenomings by this species can result in systemic coagulopathy, local tissue injury and/or renal failure. While administration of specific antivenom is an effective treatment for Russell's viper envenomings, the availability of, and access to, geographically-appropriate antivenom remains problematic in many rural areas. In this study, we determined the binding and neutralizing capability of antivenoms manufactured by the Thai Red Cross in Thailand against D. siamensis venoms from four geographical locales: Myanmar, Taiwan, China and Thailand.

    METHODOLOGY/PRINCIPLE FINDINGS: The D. siamensis monovalent antivenom displayed extensive recognition and binding to proteins found in D. siamensis venom, irrespective of the geographical origin of those venoms. Similar immunological characteristics were observed with the Hemato Polyvalent antivenom, which also uses D. siamensis venom as an immunogen, but binding levels were dramatically reduced when using comparator monovalent antivenoms manufactured against different snake species. A similar pattern was observed when investigating neutralization of coagulopathy, with the procoagulant action of all four geographical venom variants neutralized by both the D. siamensis monovalent and the Hemato Polyvalent antivenoms, while the comparator monovalent antivenoms were ineffective. These in vitro findings translated into therapeutic efficacy in vivo, as the D. siamensis monovalent antivenom was found to effectively protect against the lethal effects of all four geographical venom variants preclinically. Assessments of in vivo nephrotoxicity revealed that D. siamensis venom (700 μg/kg) significantly increased plasma creatinine and blood urea nitrogen levels in anaesthetised rats. The intravenous administration of D. siamensis monovalent antivenom at three times higher than the recommended scaled therapeutic dose, prior to and 1 h after the injection of venom, resulted in reduced levels of markers of nephrotoxicity and prevented renal morphological changes, although lower doses had no therapeutic effect.

    CONCLUSIONS/SIGNIFICANCE: This study highlights the potential broad geographical utility of the Thai D. siamensis monovalent antivenom for treating envenomings by the Eastern Russell's viper. However, only the early delivery of high antivenom doses appears to be capable of preventing venom-induced nephrotoxicity.

  17. See JX, Samudi C, Saeidi A, Menon N, Choh LC, Vadivelu J, et al.
    PLoS Negl Trop Dis, 2016 Mar;10(3):e0004503.
    PMID: 26974441 DOI: 10.1371/journal.pntd.0004503
    Burkholderia pseudomallei (B. pseudomallei), the causative agent of melioidosis, is a deadly pathogen endemic across parts of tropical South East Asia and Northern Australia. B. pseudomallei can remain latent within the intracellular compartment of the host cell over prolonged periods of time, and cause persistent disease leading to treatment difficulties. Understanding the immunological mechanisms behind persistent infection can result in improved treatment strategies in clinical melioidosis.
  18. Fornace KM, Herman LS, Abidin TR, Chua TH, Daim S, Lorenzo PJ, et al.
    PLoS Negl Trop Dis, 2018 Jun;12(6):e0006432.
    PMID: 29902171 DOI: 10.1371/journal.pntd.0006432
    BACKGROUND: Primarily impacting poor, rural populations, the zoonotic malaria Plasmodium knowlesi is now the main cause of human malaria within Malaysian Borneo. While data is increasingly available on symptomatic cases, little is known about community-level patterns of exposure and infection. Understanding the true burden of disease and associated risk factors within endemic communities is critical for informing evidence-based control measures.

    METHODOLOGY/PRINCIPAL FINDINGS: We conducted comprehensive surveys in three areas where P. knowlesi transmission is reported: Limbuak, Pulau Banggi and Matunggung, Kudat, Sabah, Malaysia and Bacungan, Palawan, the Philippines. Infection prevalence was low with parasites detected by PCR in only 0.2% (4/2503) of the population. P. knowlesi PkSERA3 ag1 antibody responses were detected in 7.1% (95% CI: 6.2-8.2%) of the population, compared with 16.1% (14.6-17.7%) and 12.6% (11.2-14.1%) for P. falciparum and P. vivax. Sero-prevalence was low in individuals <10 years old for P. falciparum and P. vivax consistent with decreased transmission of non-zoonotic malaria species. Results indicated marked heterogeneity in transmission intensity between sites and P. knowlesi exposure was associated with agricultural work (OR 1.63; 95% CI 1.07-2.48) and higher levels of forest cover (OR 2.40; 95% CI 1.29-4.46) and clearing (OR 2.14; 95% CI 1.35-3.40) around houses. Spatial patterns of P. knowlesi exposure differed from exposure to non-zoonotic malaria and P. knowlesi exposed individuals were younger on average than individuals exposed to non-zoonotic malaria.

    CONCLUSIONS/SIGNIFICANCE: This is the first study to describe serological exposure to P. knowlesi and associated risk factors within endemic communities. Results indicate community-level patterns of infection and exposure differ markedly from demographics of reported cases, with higher levels of exposure among women and children. Further work is needed to understand these variations in risk across a wider population and spatial scale.

  19. Cools P, van Lieshout L, Koelewijn R, Addiss D, Ajjampur SSR, Ayana M, et al.
    PLoS Negl Trop Dis, 2020 06;14(6):e0008231.
    PMID: 32544158 DOI: 10.1371/journal.pntd.0008231
    BACKGROUND: Nucleic acid amplification tests (NAATs) are increasingly being used as diagnostic tools for soil-transmitted helminths (STHs; Ascaris lumbricoides, Trichuris trichiura, Necator americanus, Ancylostoma duodenale and A. ceylanicum), Strongyloides stercoralis and Schistosoma in human stool. Currently, there is a large diversity of NAATs being applied, but an external quality assessment scheme (EQAS) for these diagnostics is lacking. An EQAS involves a blinded process where test results reported by a laboratory are compared to those reported by reference or expert laboratories, allowing for an objective assessment of the diagnostic performance of a laboratory. In the current study, we piloted an international EQAS for these helminths (i) to investigate the feasibility of designing and delivering an EQAS; (ii) to assess the diagnostic performance of laboratories; and (iii) to gain insights into the different NAAT protocols used.

    METHODS AND PRINCIPAL FINDINGS: A panel of twelve stool samples and eight DNA samples was validated by six expert laboratories for the presence of six helminths (Ascaris, Trichuris, N. americanus, Ancylostoma, Strongyloides and Schistosoma). Subsequently this panel was sent to 15 globally dispersed laboratories. We found a high degree of diversity among the different DNA extraction and NAAT protocols. Although most laboratories performed well, we could clearly identify the laboratories that were poorly performing.

    CONCLUSIONS/SIGNIFICANCE: We showed the technical feasibility of an international EQAS for the NAAT of STHs, Strongyloides and Schistosoma. In addition, we documented that there are clear benefits for participating laboratories, as they can confirm and/or improve the diagnostic performance of their NAATs. Further research should aim to identify factors that explain poor performance of NAATs.

  20. Franco L, Palacios G, Martinez JA, Vázquez A, Savji N, De Ory F, et al.
    PLoS Negl Trop Dis, 2011 Aug;5(8):e1251.
    PMID: 21829739 DOI: 10.1371/journal.pntd.0001251
    Dengue virus (DENV) circulates in human and sylvatic cycles. Sylvatic strains are both ecologically and evolutionarily distinct from endemic viruses. Although sylvatic dengue cycles occur in West African countries and Malaysia, only a few cases of mild human disease caused by sylvatic strains and one single case of dengue hemorrhagic fever in Malaysia have been reported. Here we report a case of dengue hemorrhagic fever (DHF) with thrombocytopenia (13000/µl), a raised hematocrit (32% above baseline) and mucosal bleeding in a 27-year-old male returning to Spain in November 2009 after visiting his home country Guinea Bissau. Sylvatic DENV-2 West African lineage was isolated from blood and sera. This is the first case of DHF associated with sylvatic DENV-2 in Africa and the second case worldwide of DHF caused by a sylvatic strain.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links