Displaying publications 41 - 60 of 376 in total

Abstract:
Sort:
  1. Abd Rahim NH, Cannicci S, Ibrahim YS, Not C, Idris I, Mohd Jani J, et al.
    Sci Total Environ, 2023 Dec 10;903:166271.
    PMID: 37586534 DOI: 10.1016/j.scitotenv.2023.166271
    Brachyuran crabs are ecologically and economically important macrofauna in mangrove habitats. However, they are exposed to various contaminants, including plastics, which bioaccumulate in relation to their feeding modes. Setiu Wetlands is a unique place on the east coast of Peninsular Malaysia where different ecosystems such as mangroves, lagoon, beaches, etc., are duly connected and influencing each other. In recent years, the shifted river mouth has threatened these wetlands, causing severe hydrodynamic changes in the lagoon, especially in the core mangrove zone. The present study tested microplastics (MPs) contamination in the mangroves through brachyuran crabs as indicators. Three sampling sites, namely Pulau Layat, Kampung Pengkalan Gelap, and Pulau Sutung were chosen. The four abundant crab species Parasesarma eumolpe, Metaplax elegans, Austruca annulipes, and Scylla olivacea, which display different feeding behaviours were collected from all sites covering the dry (Feb-Mar 2021) and the wet (Dec 2021-Jan 2022) seasonal periods. There were significant differences in the seasonal abundance of MPs among crab species. The highest accumulation of MPs in the crab stomachs in the dry season could be linked to subdued water circulation and poor material dispersion. Besides the lower MPs in the wet period due to improved water exchange conditions, its significant presence in the stomachs of S. olivacea indicates the role of its feeding behaviour as a carnivore. In addition, the micro-Fourier transform infrared spectroscopy (micro-FTIR) revealed the widespread occurrence of polymers such as rayon and polyester in all species across the sites. Given the fact that crabs like S. olivacea are commercially important and the ones contaminated with MPs can cause detrimental effects on the local community's health, further managerial actions are needed to assure sustainable management of the Setiu Wetlands.
  2. Hee YY, Hanif NM, Weston K, Latif MT, Suratman S, Rusli MU, et al.
    Sci Total Environ, 2023 Dec 01;902:166153.
    PMID: 37562616 DOI: 10.1016/j.scitotenv.2023.166153
    Atmospheric microplastic transport is an important delivery pathway with the deposition of microplastics to ecologically important regions raising environmental concerns. Investigating atmospheric delivery pathways and their deposition rates in different ecosystems is necessary to understanding its global impact. In this study, atmospheric deposition was collected at three sites in Malaysia, two urban and one pristine, covering the Northeast and Southwest monsoons to quantify the role of this pathway in Southeast Asia. Air mass back trajectories showed long-range atmospheric transport of microplastics to all sites with atmospheric deposition varying from 114 to 689 MP/m2/day. For the east coast of Peninsular Malaysia, monsoonal season influenced microplastic transport and deposition rate with peak microplastic deposition during the Northeast monsoon due to higher wind speed. MP morphology combined with size fractionation and plastic type at the coastal sites indicated a role for long-range marine transport of MPs that subsequently provided a local marine source to the atmosphere at the coastal sites.
  3. Zheng Y, Ooi MCG, Juneng L, Wee HB, Latif MT, Nadzir MSM, et al.
    Sci Total Environ, 2023 Nov 25;901:166430.
    PMID: 37607626 DOI: 10.1016/j.scitotenv.2023.166430
    Climate change is thought to influence the composition of atmospheric air, but little is known about the direct relationship between these variables, especially in a hot tropical climate like that of Malaysia. This work summarizes and analyzes the climate state and air quality of Peninsular Malaysia based on selected ground-based observations of the temperature, precipitation, relative humidity, wind speed, wind direction and concentrations of PM10, O3, CO, NO2, and SO2 over the last 20 years (2000-2019). The relationship between the climate state and air quality is analyzed using the Pearson correlation and canonical correlation analysis (CCA) methods is employed to predict the degree of change in the future air quality under different warming scenarios. It is found that the Peninsular Malaysia mainly experienced strong precipitation in the central and mountainous regions, while air pollutants are primarily concentrated in densely populated areas. Throughout the period of study (interannual, monthly, and diurnal time series analyses), Peninsular Malaysia became warmer and drier, with a significant increase in temperature (+4.2 %), decrease in the relative humidity (-4.5 %), and greater fluctuation in precipitation amount. The pollution conditions have worsened; there has been an increase in the PM10 (+16.4 %), O3 (+39.5 %), and NO2 (+2.1 %) concentration over the last 20 years. However, the amount of SO2 (-53.6 %) and CO (-20.6 %) decreased significantly. The analysis of the monthly variation shows a strong bimodality of the PM10 and O3 concentrations that corresponds to the monsoon transition. Intensive diurnal fluctuations and correlations are observed for all the variables in this study. According to the CCA, the air quality factors are strongly correlated with meteorological factors; in particular, the CO, O3, and PM10 concentrations interact strongly with the air temperature. These findings show that the future air quality in Peninsular Malaysia has high possibility to deteriorate under warming condition.
  4. Kiehbadroudinezhad M, Hosseinzadeh-Bandbafha H, Karimi K, Madadi M, Chisti Y, Peng W, et al.
    Sci Total Environ, 2023 Nov 15;899:165751.
    PMID: 37499830 DOI: 10.1016/j.scitotenv.2023.165751
    Life cycle assessment was used to evaluate the environmental impacts of phytoplanktonic biofuels as possible sustainable alternatives to fossil fuels. Three scenarios were examined for converting planktonic biomass into higher-value commodities and energy streams using the alga Scenedesmus sp. and the cyanobacterium Arthrospira sp. as the species of interest. The first scenario (Sc-1) involved the production of biodiesel and glycerol from the planktonic biomass. In the second scenario (Sc-2), biodiesel and glycerol were generated from the planktonic biomass, and biogas was produced from the residual biomass. The process also involved using a catalyst derived from snail shells for biodiesel production. The third scenario (Sc-3) was similar to Sc-2 but converted CO2 from the biogas upgrading to methanol, which was then used in synthesizing biodiesel. The results indicated that Sc-2 and Sc-3 had a reduced potential (up to 60 % less) for damaging human health compared to Sc-1. Sc-2 and Sc-3 had up to 61 % less environmental impact than Sc-1. Sc-2 and Sc-3 reduced the total cumulative exergy demand by up to 44 % compared to Sc-1. In conclusion, producing chemicals and utilities within the biorefinery could significantly improve environmental sustainability, reduce waste, and diversify revenue streams.
  5. Ha S, Jeong B, Jang H, Park C, Ku B
    Sci Total Environ, 2023 Nov 01;897:165366.
    PMID: 37419370 DOI: 10.1016/j.scitotenv.2023.165366
    This research was motivated to address limitations in the current lifecycle assessment frameworks with the absence of proper guidelines for developing default lifecycle values of energies in consideration of supply chain activities and maritime transportation. Given this, it aims to evaluate the level of life cycle GHG emissions of heavy fuel oil, LNG, LPG and methanol as marine fuels produced and supplied in energy import-dependent countries, using South Korea as a case study. The analysis clearly shows that the impact of international shipping on Well-to-Tank (WtT) GHG emissions for energy carriers would be subject to several factors: propulsion system types, the quantify of energy transported, and the routes and distances of voyages. For instance, transportation emissions from LNG carriers for LNG fuel vary significantly depending on the country of import, ranging from 2.26 g CO2 eq./MJ (representing 12.2 % of Well-to-Tank (WtT) emissions for Malaysia) to 5.97 g CO2 eq./MJ (representing 33.3 % of WtT emissions for Qatar). As a preliminary study, an enhancement on the quality of the input/inventory data is imperative for obtaining a reliability of results. Nevertheless, the comparative analysis of different fuels and life stages provides valuable insights for stakeholders to develop effective policies and energy refueling plans for reducing life cycle GHG emissions from marine fuels. These findings could also enhance the current regulatory framework and provide meaningful lifecycle carbon footprints of marine fuels for energy importing countries. The study results also strongly suggest that default values of GHG emission for different countries relying on energy imports via international maritime transport should be further developed in consideration of the impact of regional differences, such as distance, from the importing country for successful arrival of LCA application on marine industry.
  6. Razman KK, Hanafiah MM, Mohammad AW, Agashichev S, Sgouridis S, AlMarzooqi F
    Sci Total Environ, 2023 Oct 20;896:165244.
    PMID: 37394066 DOI: 10.1016/j.scitotenv.2023.165244
    Reverse osmosis (RO) membrane-based desalination system with various configurations has emerged as a critical option for reclaiming brackish water. This study aims to evaluate the environmental performance of the combination of photovoltaic-reverse osmosis (PVRO) membrane treatment system via life cycle assessment (LCA). The LCA was calculated using SimaPro v9 software with ReCiPe 2016 methodology and EcoInvent 3.8 database following the ISO 14040/44 series. The findings identified the chemical and electricity consumption at both the midpoint and endpoint level across all impact categories with terrestrial ecotoxicity (27.59 kg 1,4-DCB), human non-carcinogenic toxicity potential (8.06 kg 1,4-DCB) and GWP (4.33 kg CO2 eq) as the highest impacts for the PVRO treatment. As for the endpoint level, the desalination system affected human health, ecosystems and resources at 1.39 × 10-5 DALY, 1.49 × 10-7 species·year and 0.25 USD2013 respectively. The construction phase for the overall PVRO treatment plant was also assessed and impacted less significantly compared to the operational phase. Three different scenarios (i.e. S1: Grid input (Baseline); S2: Photovoltaic (PV)/Battery; S3: PV/Grid) based on different sources of electricity used were also compared as electricity consumption is one of the significant impacts in the operational phase. The study found that S2 had the lowest environmental impact, while S1 contributed the highest when both midpoint and endpoint approaches are considered.
  7. Zhu J, Cai Y, Wakisaka M, Yang Z, Yin Y, Fang W, et al.
    Sci Total Environ, 2023 Oct 20;896:165200.
    PMID: 37400020 DOI: 10.1016/j.scitotenv.2023.165200
    Microalgae have been recognized as emerging cell factories due to the high value-added bio-products. However, the balance between algal growth and the accumulation of metabolites is always the main contradiction in algal biomass production. Hence, the security and effectiveness of regulating microalgal growth and metabolism simultaneously have drawn substantial attention. Since the correspondence between microalgal growth and reactive oxygen species (ROS) level has been confirmed, improving its growth under oxidative stress and promoting biomass accumulation under non-oxidative stress by exogenous mitigators is feasible. This paper first introduced ROS generation in microalgae and described the effects of different abiotic stresses on the physiological and biochemical status of microalgae from these aspects associated with growth, cell morphology and structure, and antioxidant system. Secondly, the role of exogenous mitigators with different mechanisms in alleviating abiotic stress was concluded. Finally, the possibility of exogenous antioxidants regulating microalgal growth and improving the accumulation of specific products under non-stress conditions was discussed.
  8. Song C, Xiong Y, Jin P, Sun Y, Zhang Q, Ma Z, et al.
    Sci Total Environ, 2023 Oct 15;895:164986.
    PMID: 37353016 DOI: 10.1016/j.scitotenv.2023.164986
    China is responsible for the biggest shellfish and macroalgae production in the world. In this study, comprehensive methods were used to assess the CO2 release and sequestration by maricultured shellfish and macroalgae in China. Through considering CaCO3 production and CO2 release coefficient (Φ, moles of CO2 released per mole of CaCO3 formed) in different waters, we find that cultured shellfish released 0.741 ± 0.008 Tg C yr-1 through calcification based on the data of 2016-2020. In addition to calcification, maricultured shellfish released 0.580 ± 0.004 Tg C yr-1 by respiration. Meanwhile, shellfish sequestered 0.145 ± 0.001 and 0.0387 ± 0.0004 Tg C yr-1 organic carbon in sediments and shells, respectively. Therefore, the net released CO2 by maricultured shellfish was 1.136 ± 0.011 Tg C yr-1, which is about four times higher than that maricultured macroalgae could sequester (0.280 ± 0.010 Tg C yr-1). To achieve carbon neutrality within the mariculture system, shellfish culture may need to be restricted and meanwhile the expansion of macroalgae cultivation should be carried out. The mean carbon sequestration rate of seven kinds of macroalgae was 174 ± 6 g m-2 yr-1 while some cultivated macroalgae had higher CO2 sequestration rates, e.g. 356 ± 24 g C m-2 yr-1 for Gracilariopsis lemaneiformis and 331 ± 17 g C m-2 yr-1 for Undaria pinnatifida. In scenario 0.5 (CCUS (Carbon Capture, Utilization and Storage) sequesters 0.5 Gt CO2 per year), using macroalgae culture cannot achieve China's carbon neutrality by 2060 but in scenarios 1.0 and 1.5 (CCUS sequesters 1.0 and 1.5 Gt CO2 per year, respectively) it is feasible to achieve carbon neutrality using some macroalgae species with high carbon sequestration rates. This study provides important insights into how to develop mariculture in the context of carbon-neutrality and climate change mitigation.
  9. Wei S, Sun B, Liu C, Sokolova I, Waiho K, Fang JKH, et al.
    Sci Total Environ, 2023 Oct 01;893:164836.
    PMID: 37321498 DOI: 10.1016/j.scitotenv.2023.164836
    Nano-TiO2 can act as a vector to organic compounds, such as pentachlorophenol (PCP) posing a potential threat to the marine ecosystems. Studies showed that nano pollutant toxicity can be modulated by abiotic factors, but little is known about the potential influence of biotic stressors (such as predators) on the physiological responses to pollutants in marine organisms. We explored the effects of n-TiO2 and PCP on the mussel Mytilus coruscus in the presence of its natural predator, the swimming crab Portunus trituberculatus. Exposure to n-TiO2, PCP, and predation risk showed interactive effects on antioxidant and immune parameters of the mussels. Elevated activities of catalase (CAT), glutathione peroxidase (GPX), acid phosphatase (ACP) and alkaline phosphatase (AKP), suppressed activity of superoxide dismutase (SOD), lower levels of glutathione (GSH) and increased malondialdehyde (MDA) levels indicated dysregulation of the antioxidant system and immune stress induced by single PCP or n-TiO2 exposure. Integrated biomarker (IBR) response values showed the effect of PCP was concentration dependent. Of the two used n-TiO2 sizes (25 and 100 nm), larger particles induced higher antioxidant and immune disturbances indicating higher toxicity possibly due to higher bioavailability. Compared to single PCP exposure, the combination of n-TiO2 and PCP enhanced the imbalance of SOD/CAT and GSH/GPX and led to elevated oxidative lesions and activation of immune-related enzymes. Overall, the combined impacts of pollutants and biotic stress exhibited a greater magnitude of adverse effects on antioxidant defense and immune parameters in mussels. The toxicological effects of PCP were exacerbated in the presence of n-TiO2, and the deleterious impact of these stressors was further amplified under predator-induced risk after prolonged (28 days) exposure. However, the underlying physiological regulatory mechanisms governing the interplay of these stressors and predatory cues on mussels remain elusive, warranting further investigation.
  10. Leal Filho W, Aina YA, Dinis MAP, Purcell W, Nagy GJ
    Sci Total Environ, 2023 Sep 20;892:164819.
    PMID: 37315612 DOI: 10.1016/j.scitotenv.2023.164819
    Higher education (HE) matters to the global struggle to combat climate change. Research builds knowledge and informs climate solutions. Educational programmes and courses upskill current and future leaders and professionals to tackle the systems change and the transformation needed to improve society. Through their outreach and civic engagement work, HE helps people understand and address the climate change impacts, notably on under-resourced or marginalised people. By raising awareness of the problem and supporting capacity and capability building, HE encourages changes in attitudes and behaviours, focusing on adaptive change in preparing people to face the challenges of a changing climate. However, HE has yet to fully articulate its contribution towards climate change challenges, which means that organisational structures, curricula and research programmes do not reflect the interdisciplinary nature of the climate crisis. This paper describes the role of HE in supporting education and research efforts on climate change and outlines areas where further action is urgently needed. The study adds to the empirical research on HE's role in combating climate change and the role of cooperation in maximising the global effort to cope with a changing climate.
  11. Goh WHD, Lau HS, Yong WF
    Sci Total Environ, 2023 Sep 20;892:164582.
    PMID: 37277034 DOI: 10.1016/j.scitotenv.2023.164582
    Material synthesis requires an enormous amount of organic solvents which leads to huge environmental burdens. Being so, the necessity to utilize non-toxic chemicals is of growing interest in the global market. Harnessing a green fabrication strategy could be a sustainable remedy. Herein, life cycle assessment (LCA) and techno-economic assessment (TEA) using a cradle-to-gate approach to select the green synthesis route for the production of main components in mixed matrix membranes such as polymer and fillers were studied. Five representative synthesis routes of polymers of intrinsic microporosity (PIM-1) and fillers such as UiO-66-NH2 (UiO: University of Oslo) were conducted. Our findings revealed that the tetrachloroterephthalonitrile (TCTPN) synthesized PIM-1 using a novel approach (e.g., P5-Novel synthesis) and solvent-free synthesized UiO-66-NH2 (e.g., U5-Solvent-free) demonstrated the least environmental impact and are most economically feasible. The environmental burden and cost of PIM-1 synthesized by P5-Novel synthesis route decreased by 50 % and 15 %, respectively, while that of UiO-66-NH2 produced via U5-Solvent-free route reduced by 89 % and 52 %, respectively. Additionally, solvent reduction was found to have an apparent effect on cost-saving, whereby the production cost declined 13 % with a 30 % solvent reduction. Alleviation of environmental burdens could also be found through recovering solvents or substituting with a greener alternative (e.g., water). The fundamentals gained on the environmental impacts and economic feasibility of PIM-1 and UiO-66-NH2 production from this LCA-TEA study may provide a preliminary evaluation for the development of green and sustainable materials.
  12. Ghorbani M, Kianmehr MH, Sarlaki E, Angelidaki I, Yang Y, Tabatabaei M, et al.
    Sci Total Environ, 2023 Sep 20;892:164526.
    PMID: 37257609 DOI: 10.1016/j.scitotenv.2023.164526
    The livestock industry needs to use crop straws that are highly digestible to improve feed productivity and reduce ruminal methane emissions. Hence, this study aimed to use the ozonation and pelleting processes to enhance the digestibility and reduce the ruminal methane emissions of wheat straw enriched with two nitrogen sources (i.e., urea and heat-processed broiler litter). Various analyses were conducted on the pellets, including digestibility indicators, mechanical properties, surface chemistry functionalization, chemical-spectral-structural features, and energy requirements. For comparison, loose forms of the samples were also analyzed. The nitrogen-enriched ozonated wheat straw pellets had 43.06 % lower lignin, 28.30 % higher gas production for 24 h, 12.28 % higher metabolizable energy, 13.78 % higher in vitro organic matter digestibility for 24 h, and 28.81 % higher short-chain fatty acid content than the nitrogen-enriched loose sample. The reduction of methane emissions by rumen microorganisms of nitrogen-enriched wheat straw by ozonation, pelleting, and ozonation-pelleting totaled 89.15 %, 23.35 %, and 66.98 %, respectively. The ozonation process resulted in a 64 % increase in the particle density, a 5.5-time increase in the tensile strength, and a 75 % increase in the crushing energy of nitrogen-enriched wheat straw. In addition, ozone treatment could also reduce the specific and thermal energy consumption required in the pelleting process by 15.10 % and 7.61 %, respectively.
  13. Sa'adi Z, Yusop Z, Alias NE, Shiru MS, Muhammad MKI, Ramli MWA
    Sci Total Environ, 2023 Sep 20;892:164471.
    PMID: 37257620 DOI: 10.1016/j.scitotenv.2023.164471
    This paper aims to select the most appropriate rain-based meteorological drought index for detecting drought characteristics and identifying tropical drought events in the Johor River Basin (JRB). Based on a multi-step approach, the study evaluated seven drought indices, including the Rainfall Anomaly Index (RAI), Standardized Precipitation Index (SPI), China-Z Index (CZI), Modified China-Z Index (MCZI), Percent of Normal (PN), Deciles Index (DI), and Z-Score Index (ZSI), based on the CHIRPS rainfall gridded-based datasets from 1981 to 2020. Results showed that CZI, MCZI, SPI, and ZSI outperformed the other indices based on their correlation and linearity (R2 = 0.96-0.99) along with their ranking based on the Compromise Programming Index (CPI). The historical drought evaluation revealed that MCZI, SPI, and ZSI performed similarly in detecting drought events, but SPI was more effective in detecting spatial coverage and the occurrence of 'very dry' and 'extremely dry' drought events. Based on SPI, the study found that the downstream area, north-easternmost area, and eastern boundary of the basin were more prone to higher frequency and longer duration droughts. Furthermore, the study found that prolonged droughts are characterized by episodic drought events, which occur with one to three months of 'relief period' before another drought event occurs. The study revealed that most drought events that coincide with El Niño, positive Indian Ocean Dipole (IOD), and negative Madden-Julian Oscillation (MJO) events, or a combination of these events, may worsen drought conditions. The application of CHIRPS datasets enables better spatiotemporal mapping and prediction of drought for JRB, and the output is pertinent for improving water management strategies and adaptation measures. Understanding spatiotemporal drought conditions is crucial to ensuring sustainable development and policies through better regulation of human activities. The framework of this research can be applied to other river basins in Malaysia and other parts of Southeast Asia.
  14. Zhu C, Zhou W, Han M, Yang Y, Li Y, Jiang Q, et al.
    Sci Total Environ, 2023 Sep 15;891:164460.
    PMID: 37247739 DOI: 10.1016/j.scitotenv.2023.164460
    Microplastics and nanoplastics (MPs and NPs) are abundant, persistent, and widespread environmental pollutants that are of increasing concern as they pose a serious threat to ecosystems and aquatic species. Identifying the ecological effects of NPs pollution requires understanding the effects of changing nanoplastics concentrations in aquatic organisms. Monopterus albus were orally fed three different concentrations of 100 nm polystyrene nanoplastics (PS-NPs): 0.05 %, 0.5 %, and 1 % of the feed for 28 days. Nanoplastics significantly activated the PPAR signaling pathway, Acyl-CoA oxidase 1 (ACOX1), carnitine palmitoyltransferase 1a (CPT1A), angiopoietin-like 4 (ANGPTL4), and phosphoenolpyruvate carboxykinase (PCK) at the mRNA level, resulting in disturbed lipid metabolism. Glutathione peroxidase (GSH-px) activity, catalase (CAT) activity, and malondialdehyde (MDA) were significantly elevated in the high nanoplastics-feeding exposure group, leading to oxidative stress in the liver. Overexpression of the cytokines genes Interleukin 1 (IL1B) and Interleukin-8 (IL8), Tumor necrosis factor alpha (TNF-α), activation of MAPK signaling pathway, and increased gene expression of c-Jun amino-terminal kinases (JNK) and p38 indicate that exposure to NPs may lead to hepatopancreas apoptosis through oxidative stress and inflammation. In summary, dietary PS-NPs exposure alters hepatic glycolipid metabolism, triggering inflammatory responses and apoptosis in M. albus. The results of this study provide valuable ecotoxicological data for a better understanding of the biological fate and effects of nanoplastics in M. albus.
  15. Liu B, Lu Y, Deng H, Huang H, Wei N, Jiang Y, et al.
    Sci Total Environ, 2023 Sep 01;889:164173.
    PMID: 37201824 DOI: 10.1016/j.scitotenv.2023.164173
    Microplastic (MP) pollution is a serious global environmental problem, particularly in marine ecosystems. However, the pollution patterns of MPs in the ocean and atmosphere, particularly the sea-air interrelationship, remain unclear. Therefore, the abundance, distribution patterns, and sources of MPs in the seawater and atmosphere of the South China Sea (SCS) were comparatively investigated. The results showed that MPs were prevalent in the SCS with an average abundance of 103.4 ± 98.3 items/m3 in the seawater and 4.62 ± 3.60 items/100 m3 in the atmosphere. The spatial analysis indicated that the pollution patterns of seawater MPs were mainly determined by land-based discharge and sea surface currents, whereas atmospheric MPs were predominantly determined by air parcel trajectory and wind conditions. The highest MP abundance of 490 items/m3 in seawater was found at a station near Vietnam with current vortices. However, the highest MP abundance of 14.6 items/100 m3 in the atmosphere was found in air parcels with low-speed southerly winds from Malaysia. Similar MP compositions (e.g., polyethylene terephthalate, polystyrene, and polyethylene) were observed in the two environmental compartments. Furthermore, similar MP characteristics (e.g., shape, color, and size) in the seawater and atmosphere of the same region suggested a close relationship between the MPs in the two compartments. For this purpose, cluster analysis and calculation of the MP diversity integrated index were performed. The results showed an obvious dispersion between the two compartment clusters and a higher diversity integrated index of MPs in seawater than in the atmosphere, thus implying higher compositional diversity and more complex sources of MPs in seawater relative to the atmosphere. These findings deepen our understanding of MP fate and patterns in the semi-enclosed marginal sea environment and highlight the potential interrelationship of MPs in the air-sea system.
  16. Zhou J, Wu C, Yeh PJ, Ju J, Zhong L, Wang S, et al.
    Sci Total Environ, 2023 Sep 01;889:164274.
    PMID: 37209749 DOI: 10.1016/j.scitotenv.2023.164274
    The successive flood-heat extreme (SFHE) event, which threatens the securities of human health, economy, and building environment, has attracted extensive research attention recently. However, the potential changes in SFHE characteristics and the global population exposure to SFHE under anthropogenic warming remain unclear. Here, we present a global-scale evaluation of the projected changes and uncertainties in SFHE characteristics (frequency, intensity, duration, land exposure) and population exposure under the Representative Concentration Pathway (RCP) 2.6 and 6.0 scenarios, based on the multi-model ensembles (five global water models forced by four global climate models) within the Inter-Sectoral Impact Model Intercomparison Project 2b framework. The results reveal that, relative to the 1970-1999 baseline period, the SFHE frequency is projected to increase nearly globally by the end of this century, especially in the Qinghai-Tibet Plateau (>20 events/30-year) and the tropical regions (e.g., northern South America, central Africa, and southeastern Asia, >15 events/30-year). The projected higher SFHE frequency is generally accompanied by a larger model uncertainty. By the end of this century, the SFHE land exposure is expected to increase by 12 % (20 %) under RCP2.6 (RCP6.0), and the intervals between flood and heatwave in SFHE tend to decrease by up to 3 days under both RCPs, implying the more intermittent SFHE occurrence under future warming. The SFHE events will lead to the higher population exposure in the Indian Peninsula and central Africa (<10 million person-days) and eastern Asia (<5 million person-days) due to the higher population density and the longer SFHE duration. Partial correlation analysis indicates that the contribution of flood to the SFHE frequency is greater than that of heatwave for most global regions, but the SFHE frequency is dominated by the heatwave in northern North America and northern Asia.
  17. Tong CY, Derek CJC
    Sci Total Environ, 2023 Aug 20;887:163857.
    PMID: 37149157 DOI: 10.1016/j.scitotenv.2023.163857
    Bio-coatings serve as artificial scaffolds for immobilizing microalgae to facilitate cell concentration and harvesting. It has been used as an additional step to enhance the natural microalgal biofilm cultivation and to promote new opportunities in artificially-immobilize cultivation technology of microalgae. This technique is able to enhance biomass productivities, enable energy and cost saving, water volume reduction and ease of biomass harvesting since the cells are physically isolated from the liquid medium. However, scientific discoveries of bio-coatings for process intensification are still lacking and their working principles remained unclear. Therefore, this critical review aims to shed light on the advancement of cell encapsulation systems (hydrogel coating, artificial leaf, bio-catalytic latex coating, and cellular polymeric coating) over the years and aid in the selection of appropriate bio-coating techniques for various applications. Discussion on the different preparation routes of bio-coatings, as well as the exploration towards the potential of bio-based coating materials such as natural/synthetic polymers, latex binders, and algal organic matters are also included, with a focus on sustainable pursuits. This review also presents in-depth investigations into the environmental applications of bio-coatings in wastewater remediation, air purification, carbon bio-fixation, and bio-electricity. The field of bio-coating in microalgae immobilization gives rise to a new ecofriendly strategy with scalable cultivation footprint and a balanced environmental risk aligning with the United Nation's Sustainable Development Goals with potential towards the contribution of Zero Hunger, Clean Water and Sanitation, Affordable and Clean Energy, and Responsible Consumption and Production.
  18. Ross FWR, Boyd PW, Filbee-Dexter K, Watanabe K, Ortega A, Krause-Jensen D, et al.
    Sci Total Environ, 2023 Aug 10;885:163699.
    PMID: 37149169 DOI: 10.1016/j.scitotenv.2023.163699
    Seaweed (macroalgae) has attracted attention globally given its potential for climate change mitigation. A topical and contentious question is: Can seaweeds' contribution to climate change mitigation be enhanced at globally meaningful scales? Here, we provide an overview of the pressing research needs surrounding the potential role of seaweed in climate change mitigation and current scientific consensus via eight key research challenges. There are four categories where seaweed has been suggested to be used for climate change mitigation: 1) protecting and restoring wild seaweed forests with potential climate change mitigation co-benefits; 2) expanding sustainable nearshore seaweed aquaculture with potential climate change mitigation co-benefits; 3) offsetting industrial CO2 emissions using seaweed products for emission abatement; and 4) sinking seaweed into the deep sea to sequester CO2. Uncertainties remain about quantification of the net impact of carbon export from seaweed restoration and seaweed farming sites on atmospheric CO2. Evidence suggests that nearshore seaweed farming contributes to carbon storage in sediments below farm sites, but how scalable is this process? Products from seaweed aquaculture, such as the livestock methane-reducing seaweed Asparagopsis or low carbon food resources show promise for climate change mitigation, yet the carbon footprint and emission abatement potential remains unquantified for most seaweed products. Similarly, purposely cultivating then sinking seaweed biomass in the open ocean raises ecological concerns and the climate change mitigation potential of this concept is poorly constrained. Improving the tracing of seaweed carbon export to ocean sinks is a critical step in seaweed carbon accounting. Despite carbon accounting uncertainties, seaweed provides many other ecosystem services that justify conservation and restoration and the uptake of seaweed aquaculture will contribute to the United Nations Sustainable Development Goals. However, we caution that verified seaweed carbon accounting and associated sustainability thresholds are needed before large-scale investment into climate change mitigation from seaweed projects.
  19. Yang Y, Zhang Z, Zhang L, Song F, Ren Y, Zhang X, et al.
    Sci Total Environ, 2023 Aug 01;884:163741.
    PMID: 37120025 DOI: 10.1016/j.scitotenv.2023.163741
    Wood-based panels provide efficient alternatives to materials such as plastics derived from traditional petroleum sources and thereby help to mitigate greenhouse gas emissions. Unfortunately, using indoor manufactured panel products also results in significant emissions of volatile organic compounds including olefins, aromatic and ester compounds, which negatively affect human health. This paper highlights recent developments and notable achievements in the field of indoor hazardous air treatment technologies to guide future research toward environmentally friendly and economically feasible directions that may have a significant impact on the improvement of human settlements. Summarizing and synthesizing the principles, advantages, and limitations of different technologies can assist policymakers and engineers in identifying the most appropriate technology for a particular air pollution control program based on criteria such as cost-effectiveness, efficiency, and environmental impact. In addition, insights into the development of indoor air pollution control technologies are provided and potential areas for innovation, improvement of existing technologies, and development of new technologies are identified. Finally, the authors also hope that this sub-paper will raise public awareness of indoor air pollution issues and promote a better understanding of the importance of indoor air pollution control technologies for public health, environmental protection, and sustainable development.
  20. Loy ACM, Lim JY, How BS, Yiin CL, Lock SSM, Lim LG, et al.
    Sci Total Environ, 2023 Jul 10;881:163458.
    PMID: 37068680 DOI: 10.1016/j.scitotenv.2023.163458
    The myriad consumption of plastic regularly, environmental impact and health disquietude of humans are at high risk. Along the line, international cooperation on a global scale is epitomized to mitigate the environmental threats from plastic usage, not limited to implementing international cooperation strategies and policies. Here, this study aims to provide explicit insight into possible cooperation strategies between countries on the post-treatment and management of plastic. First, a thorough cradle-to-grave assessment in terms of economic, environmental, and energy requirements is conducted on the entire life cycle across different types of plastic polymers in 6 main countries, namely the United States of America, China, Germany, Japan, South Korea, and Malaysia. Subsequently, P-graph is introduced to identify the integrative plastic waste treatment scheme that minimizes the economic, environmental, and energy criteria (1000 sets of solutions are found). Furthermore, TOPSIS analysis is also being adapted to search for a propitious solution with optimal balance between the dominant configuration of economic, environmental, and energy nexus. The most sustainable configuration (i.e., integrated downcycle and reuse routes in a closed loop system except in South Korea, which proposed another alternative to treat the plastic waste using landfill given the cheaper cost) is reported with 4.08 × 108 USD/yr, 1.76× 108 kg CO2/yr, and 2.73 × 109 MJ/yr respectively. To attain a high precision result, Monte-Carlo simulation is introduced (10,000 attempts) to search for possible uncertainties, and lastly, a potential global plastic waste management scheme is proposed via the PESTLE approach.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links