Displaying publications 41 - 60 of 378 in total

Abstract:
Sort:
  1. Chong CC, Cheng YW, Ishak S, Lam MK, Lim JW, Tan IS, et al.
    Sci Total Environ, 2022 Jan 10;803:150070.
    PMID: 34525689 DOI: 10.1016/j.scitotenv.2021.150070
    To suffice the escalating global energy demand, microalgae are deemed as high potential surrogate feedstocks for liquid fuels. The major encumbrance for the commercialization of microalgae cultivation is due to the high costs of nutrients such as carbon, phosphorous, and nitrogen. Meanwhile, the organic-rich anaerobic digestate which is difficult to be purified by conventional techniques is appropriate to be used as a low-cost nutrient source for the economic viability and sustainability of microalgae production. This option is also beneficial in terms of reutilize the organic fraction of solid waste instead of discarded as zero-value waste. Anaerobic digestate is the side product of biogas production during anaerobic digestion process, where optimum nutrients are needed to satisfy the physiological needs to grow microalgae. Besides, the turbidity, competing biological contaminants, ammonia and metal toxicity of the digestate are also potentially contributing to the inhibition of microalgae growth. Thus, this review is aimed to explicate the feasibility of utilizing the anaerobic digestate to cultivate microalgae by evaluating their potential challenges and solutions. The proposed potential solutions (digestate dilution and pre-treatment, microalgae strain selection, extra organics addition, nitrification and desulfurization) corresponding to the state-of-the-art challenges are applicable as future directions of the research.
  2. Ghaffarianhoseini A, Berardi U, Ghaffarianhoseini A, Al-Obaidi K
    Sci Total Environ, 2019 Jan 26.
    PMID: 30857724 DOI: 10.1016/j.scitotenv.2019.01.284
    The rapid urban expansion in East-Asian cities has increased the need for comfortable public spaces. This study presents field measurements and parametric simulations to evaluate the microclimatic characteristics in a university campus in the tropical climate of Kuala Lumpur, Malaysia. The study attempts to identify the thermally uncomfortable areas and their physical and design characteristics while debating on the circumstances of enhancing the outdoor comfort conditions for the campus users. Simulations in Envi-met and IES-VE are used to investigate the current outdoor thermal conditions, using classic thermal metric indices. Findings show high levels of thermal discomfort in most of the studied spaces. As a result, suggestions to improve the design quality of outdoor areas optimizing their thermal comfort conditions are proposed. The study concludes that effective re-design of outdoor spaces in the tropics, through adequate attention to the significant impacts of shading and vegetation, can result in achieving outdoor spaces with high frequency of use and improved comfort level.
  3. Zhou J, Wu C, Yeh PJ, Ju J, Zhong L, Wang S, et al.
    Sci Total Environ, 2023 Sep 01;889:164274.
    PMID: 37209749 DOI: 10.1016/j.scitotenv.2023.164274
    The successive flood-heat extreme (SFHE) event, which threatens the securities of human health, economy, and building environment, has attracted extensive research attention recently. However, the potential changes in SFHE characteristics and the global population exposure to SFHE under anthropogenic warming remain unclear. Here, we present a global-scale evaluation of the projected changes and uncertainties in SFHE characteristics (frequency, intensity, duration, land exposure) and population exposure under the Representative Concentration Pathway (RCP) 2.6 and 6.0 scenarios, based on the multi-model ensembles (five global water models forced by four global climate models) within the Inter-Sectoral Impact Model Intercomparison Project 2b framework. The results reveal that, relative to the 1970-1999 baseline period, the SFHE frequency is projected to increase nearly globally by the end of this century, especially in the Qinghai-Tibet Plateau (>20 events/30-year) and the tropical regions (e.g., northern South America, central Africa, and southeastern Asia, >15 events/30-year). The projected higher SFHE frequency is generally accompanied by a larger model uncertainty. By the end of this century, the SFHE land exposure is expected to increase by 12 % (20 %) under RCP2.6 (RCP6.0), and the intervals between flood and heatwave in SFHE tend to decrease by up to 3 days under both RCPs, implying the more intermittent SFHE occurrence under future warming. The SFHE events will lead to the higher population exposure in the Indian Peninsula and central Africa (<10 million person-days) and eastern Asia (<5 million person-days) due to the higher population density and the longer SFHE duration. Partial correlation analysis indicates that the contribution of flood to the SFHE frequency is greater than that of heatwave for most global regions, but the SFHE frequency is dominated by the heatwave in northern North America and northern Asia.
  4. Yi X, Yin S, Huang L, Li H, Wang Y, Wang Q, et al.
    Sci Total Environ, 2021 Jun 01;771:144644.
    PMID: 33736175 DOI: 10.1016/j.scitotenv.2020.144644
    Chlorine radical plays an important role in the formation of ozone and secondary aerosols in the troposphere. It is hence important to develop comprehensive emissions inventory of chlorine precursors in order to enhance our understanding of the role of chlorine chemistry in ozone and secondary pollution issues. Based on a bottom-up methodology, this study presents a comprehensive emission inventory for major atomic chlorine precursors in the Yangtze River Delta (YRD) region of China for the year 2017. Four primary chlorine precursors are considered in this study: hydrogen chloride (HCl), fine particulate chloride (Cl-) (Cl- in PM2.5), chlorine gas (Cl2), and hypochlorous acid (HClO) with emissions estimated for twelve source categories. The total emissions of these four species in the YRD region are estimated to be 20,424 t, 15,719 t, 1556 and 9331 t, respectively. The emissions of HCl are substantial, with major emissions from biomass burning and coal combustion, together accounting for 68% of the total HCl emissions. Fine particulate Cl- is mainly emitted from industrial processing, biomass burning and waste incineration. The emissions of Cl2 and HClO are mainly associated with usage of chlorine-containing disinfectants, for example, water treatment, wastewater treatment, and swimming pools. Emissions of each chlorine precursor are spatially allocated based on the characteristics of individual source category. This study provides important basic dataset for further studies with respect to the effects of chlorine chemistry on the formation of air pollution complex in the YRD region.
  5. Lye YL, Bong CW, Lee CW, Zhang RJ, Zhang G, Suzuki S, et al.
    Sci Total Environ, 2019 Oct 20;688:1335-1347.
    PMID: 31726563 DOI: 10.1016/j.scitotenv.2019.06.304
    The environmental reservoirs of sulfonamide (SA) resistome are still poorly understood. We investigated the potential sources and reservoir of SA resistance (SR) in Larut River and Sangga Besar River by measuring the SA residues, sulfamethoxazole resistant (SMXr) in bacteria and their resistance genes (SRGs). The SA residues measured ranged from lower than quantification limits (LOQ) to 33.13 ng L-1 with sulfadiazine (SDZ), sulfadimethoxine (SDM) and SMX as most detected. Hospital wastewater effluent was detected with the highest SA residues concentration followed by the slaughterhouse and zoo wastewater effluents. The wastewater effluents also harbored the highest abundance of SMXr-bacteria (107 CFU mL-1) and SRGs (10-1/16S copies mL-1). Pearson correlation showed only positive correlation between the PO4 and SMXr-bacteria. In conclusion, wastewater effluents from the zoo, hospital and slaughterhouse could serve as important sources of SA residues that could lead to the consequent emergence of SMXr-bacteria and SRGs in the river.
  6. Suyamud B, Chen Y, Quyen DTT, Dong Z, Zhao C, Hu J
    Sci Total Environ, 2024 Jan 10;907:167942.
    PMID: 37863226 DOI: 10.1016/j.scitotenv.2023.167942
    Aquaculture is a highly important and expanding industry in Southeast Asia (SEA). An upcoming problem is the emergence of antibiotic resistant pathogens due to the unchecked use of antibiotics and human clinical practices. This review focused insight into the occurrence of antimicrobial resistance (AMR) and strategies from SEA aquaculture based on the original research publication over the period 2002 to 2023. Amongst the 11 SEA countries, the most AMR report has come from Vietnam, Malaysia, and Thailand, respectively. The AMR found in SEA aquaculture were classified into 17 drug classes. The most reported AMR are aminoglycosides, beta-lactams, (fluoro)quinolones, tetracycline, sulpha group and multi-drug. Beta-lactams, tetracycline, sulpha group are reported in each country with the reported frequencies higher than 40 %. Escherichia coli, Aeromonas and Vibrio are the most widely and frequently reported ARB in SEA aquaculture. Multiple antibiotic resistance (MAR) indexes for the sample containing multiple bacterial isolates were generally low, while the medium numbers of MAR indexes for the typical bacteria species were higher than 0.2 and showed higher MAR levels than the global mean. Most of the detected ARGs are related to beta-lactams, tetracycline, sulpha group, and aminoglycosides. Amongst the beta-lactam resistance genes, blaTEM, and blaSHV are the most frequently detected. Almost all the available information of antibiotics, ARB and ARGs in SEA aquaculture was consistent with the global scale analysis. In addition, factors that contribute to the development and spread of AMR in SEA aquaculture were discussed. Moreover, the national action plan to combat AMR in SEA countries and the available technologies that already applied in the SEA aquaculture are also included in this review. Such findings underline the need for synergistic efforts from scientists, engineers, policy makers, government managers, entrepreneurs, and communities to manage and reduce the burden of AMR in aquaculture of SEA countries.
  7. Sa'adi Z, Yusop Z, Alias NE, Shiru MS, Muhammad MKI, Ramli MWA
    Sci Total Environ, 2023 Sep 20;892:164471.
    PMID: 37257620 DOI: 10.1016/j.scitotenv.2023.164471
    This paper aims to select the most appropriate rain-based meteorological drought index for detecting drought characteristics and identifying tropical drought events in the Johor River Basin (JRB). Based on a multi-step approach, the study evaluated seven drought indices, including the Rainfall Anomaly Index (RAI), Standardized Precipitation Index (SPI), China-Z Index (CZI), Modified China-Z Index (MCZI), Percent of Normal (PN), Deciles Index (DI), and Z-Score Index (ZSI), based on the CHIRPS rainfall gridded-based datasets from 1981 to 2020. Results showed that CZI, MCZI, SPI, and ZSI outperformed the other indices based on their correlation and linearity (R2 = 0.96-0.99) along with their ranking based on the Compromise Programming Index (CPI). The historical drought evaluation revealed that MCZI, SPI, and ZSI performed similarly in detecting drought events, but SPI was more effective in detecting spatial coverage and the occurrence of 'very dry' and 'extremely dry' drought events. Based on SPI, the study found that the downstream area, north-easternmost area, and eastern boundary of the basin were more prone to higher frequency and longer duration droughts. Furthermore, the study found that prolonged droughts are characterized by episodic drought events, which occur with one to three months of 'relief period' before another drought event occurs. The study revealed that most drought events that coincide with El Niño, positive Indian Ocean Dipole (IOD), and negative Madden-Julian Oscillation (MJO) events, or a combination of these events, may worsen drought conditions. The application of CHIRPS datasets enables better spatiotemporal mapping and prediction of drought for JRB, and the output is pertinent for improving water management strategies and adaptation measures. Understanding spatiotemporal drought conditions is crucial to ensuring sustainable development and policies through better regulation of human activities. The framework of this research can be applied to other river basins in Malaysia and other parts of Southeast Asia.
  8. Sa'adi Z, Alias NE, Yusop Z, Iqbal Z, Houmsi MR, Houmsi LN, et al.
    Sci Total Environ, 2024 Feb 20;912:169187.
    PMID: 38097068 DOI: 10.1016/j.scitotenv.2023.169187
    The most recent set of General Circulation Models (GCMs) derived from the Coupled Model Intercomparison Project Phase 6 (CMIP6) was used in this work to analyse the spatiotemporal patterns of future rainfall distribution across the Johor River Basin (JRB) in Malaysia. A group of 23 GCMs were chosen for comparative assessment in simulating basin-scale rainfall based on daily rainfall from the historical period of the Climate Hazards Group InfraRed Precipitation with Station Data (CHIRPS). The methodological novelty of this study lies in the application of relative importance metrics (RIM) to rank and select historical GCM simulations for reproducing rainfall at 109 CHIRPS grid points within the JRB. In order to choose the top GCMs, the rankings given by RIM were aggregated using the compromise programming index (CPI) and Jenks optimised classification (JOC). It was found that ACCESS-ESM1-5 and CMCC-ESM2 were ranked the highest in most of the grid. The final GCM was then bias-corrected using the linear scaling method before being ensemble based on the Bayesian model averaging (BMA) technique. The spatiotemporal assessment of the ensemble model for the different months over the near-future period 2021-2060 and far-future period 2061-2100 was compared with those under Shared Socioeconomic Pathways (SSPs), namely, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. Heterogeneous changes in rainfall were projected across the JRB, with both increasing and decreasing trends. In the near-future and far-future scenarios, higher rainfall was projected for December, indicating an elevated risk of flooding during the end of the North East monsoon (NEM). Conversely, August showed a decreasing trend in rainfall, implying an increasing risk of severe drought. The findings of this study provide valuable insights for effective water resource management and climate change adaptation in the region.
  9. Abd Manan TSB, Khan T, Sivapalan S, Jusoh H, Sapari N, Sarwono A, et al.
    Sci Total Environ, 2019 May 15;665:196-212.
    PMID: 30772550 DOI: 10.1016/j.scitotenv.2019.02.060
    Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic compounds, composed of benzene rings. The objective of this research was to identify the optimum condition for the degradation of PAHs contaminated water using photo-Fenton oxidation process via response surface methodology (RSM). Aqueous solution was prepared and potable water samples were collected from water treatment plants in Perak Tengah, Perak, Malaysia in September 2016. The reaction time, pH, molarity of H2O2 and FeSO4 were analyzed followed by RSM using aqueous solution. A five level central composite design with quadratic model was used to evaluate the effects and interactions of these parameters. The response variable was the percentage of total organic carbon (TOC) removal. PAHs quantification was done using gas chromatography mass spectrometry analysis. The regression line fitted well with the data with R2 value of 0.9757. The lack of fit test gives the highest value of Sum of Squares (15,666.64) with probability F value 0.0001 showing significant quadratic model. The optimum conditions were established corresponding to the percentage of TOC removal. The PAHs removal efficiency for potable water samples ranged from 76.4% to 91% following the first order of kinetic rates with R2 values of >0.95. Conventional water treatment techniques are not effective for PAHs removal. Thus, advanced oxidation processes may be considered as an alternative to conventional water treatment techniques in Malaysia and other developing countries.
  10. Dakheel Almaliki AJ, Bashir MJK, Llamas Borrajo JF
    Sci Total Environ, 2022 Apr 01;815:152949.
    PMID: 35007588 DOI: 10.1016/j.scitotenv.2022.152949
    Contaminated groundwater is a priority issue on the environmental agendas of developed countries. Therefore, there is an obvious need to develop instruments and decision-making mechanisms that allow the estimation of the risk to human health due to the presence of contaminants in soils and groundwater, in a fast and reliable manner. Thus, this study aims to assess whether the spilling of hydraulic fracturing fluids prior to injection has a potential risk to groundwater quality in the Kern County Sub-basin, California, by identifying the hydrological factors and solute transport characteristics that control these risks while taking into consideration the temperature rises due to climate change. The approach uses the concept of the groundwater pollution risk based on comparing the concentration of pollutants within the water table by using a predetermined permissible level. The current average annual temperature and that by the end of the 21st century was used to estimate the diffusion of benzene through three types of soil by using HYDRUS-1D software. The software was used to predict the contaminant concentration profile of benzene in the water table with special reference to the impact of surface temperatures. The results showed that an expected rise of the surface temperature by 4.3 °C led to an increase in the concentration of benzene by 2.3 μg/l in sandy loam soil, 6.8 μg/l in silt loam soil, and finally, 2.6 μg/l in loam soil. The results show that climate change can substantially affect soil properties and their chemical constituents, which then play a major role in absorbing pollutants.
  11. Dhandapani S, Ritz K, Evers S, Yule CM, Sjögersten S
    Sci Total Environ, 2019 Mar 10;655:220-231.
    PMID: 30471590 DOI: 10.1016/j.scitotenv.2018.11.046
    Tropical peatlands are globally important ecosystems with high C storage and are endangered by anthropogenic disturbances. Microbes in peatlands play an important role in sustaining the functions of peatlands as a C sink, yet their characteristics in these habitats are poorly understood. This research aimed to elucidate the responses of these complex ecosystems to disturbance by exploring greenhouse gas (GHG) emissions, nutrient contents, soil microbial communities and the functional interactions between these components in a primary and secondary peat swamp forest in Peninsular Malaysia. GHG measurements using closed chambers, and peat sampling were carried out in both wet and dry seasons. Microbial community phenotypes and nutrient content were determined using phospholipid fatty acid (PLFA) and inductively-coupled plasma mass spectrometry (ICP-MS) analyses respectively. CO2 emissions in the secondary peat swamp forest were > 50% higher than in the primary forest. CH4 emission rates were ca. 2 mg m-2 h-1 in the primary forest but the secondary forest was a CH4 sink, showing no seasonal variations in GHG emissions. Almost all the nutrient concentrations were significantly lower in the secondary forest, postulated to be due to nutrient leaching via drainage and higher rates of decomposition. Cu and Mo concentrations were negatively correlated with CO2 and CH4 emissions respectively. Microbial community structure was overwhelmingly dominated by bacteria in both forest types, however it was highly sensitive to land-use change and season. Gram-positive and Gram-negative relative abundance were positively correlated with CO2 and CH4 emissions respectively. Drainage related disturbances increased CO2 emissions, by reducing the nutrient content including some with known antimicrobial properties (Cu & Na) and by favouring Gram-positive bacteria over Gram-negative bacteria. These results suggest that the biogeochemistry of secondary peat swamp forest is fundamentally different from that of primary peat swamp forest, and these differences have significant functional impacts on their respective environments.
  12. Dalu T, Wasserman RJ, Tonkin JD, Alexander ME, Dalu MTB, Motitsoe SN, et al.
    Sci Total Environ, 2017 Dec 01;601-602:1340-1348.
    PMID: 28605853 DOI: 10.1016/j.scitotenv.2017.06.023
    Understanding the drivers of community structure is fundamental for adequately managing ecosystems under global change. Here we used a large dataset of eighty-four headwater stream sites in three catchments in the Eastern Highlands of Zimbabwe, which represent a variety of abiotic conditions and levels of impairment, to examine the drivers of benthic macroinvertebrate community structure. We focused our assessment on macroinvertebrate family level community composition and functional feeding group classifications. Taxonomic richness was weakly positively correlated with ammonium, phosphates and pH, and weakly negatively correlated with detrital cover and dissolved oxygen. Measured abiotic variables, however, had limited influence on both macroinvertebrate diversity and functional feeding group structure, with the exception of ammonium, channel width and phosphates. This reflected the fact that many macroinvertebrate families and functional feeding guilds were well represented across a broad range of habitats. Predatory macroinvertebrates were relatively abundant, with collector-filterers having the lowest relative abundances. The findings of the study suggest that for certain ecological questions, a more detailed taxonomic resolution may be required to adequately understand the ecology of aquatic macroinvertebrates within river systems. We further recommend management and conservation initiatives on the Save River system, which showed significant impact from catchment developmental pressures, such as urbanisation, agriculture and illegal mining.
  13. Itoh M, Osaka K, Iizuka K, Kosugi Y, Lion M, Shiodera S
    Sci Total Environ, 2023 Feb 10;859(Pt 2):160319.
    PMID: 36410477 DOI: 10.1016/j.scitotenv.2022.160319
    Land conversion from natural forests to plantations (e.g., oil palm) in Southeast Asia is one of the most intensive land-use changes occurring worldwide. To clarify the effects of oil palm plantations on water quality, we conducted multipoint river and stream water sampling in peninsular Malaysia at the end of the rainy season over a 3-year period (2013-2015). We measured the major dissolved ions and stable isotope ratios of water (δ2H-H2O and δ18O-H2O) and nitrate (δ15N-NO3- and δ18O-NO3-) in water from the upper streams in mountainous forests to the midstream areas of two major rivers in peninsular Malaysia. The electrical conductivity increased, and the d-excess value (as an index of the degree of evaporation) decreased with increasing distance from the headwaters, suggesting the effect of evaporative enrichment and the addition of pollutants. We separated the sampling points into four groups (G1-G4) through cluster analysis of the water quality data. From the land use/land cover (LULC) classification maps developed from satellite images and local information, we found that G1 and G2 mainly consisted of sampling points in forested areas, while G3 and G4 were located in oil-palm-affected areas. The concentrations of major ions were higher in the oil palm areas, indicating the effects of fertilizer and limestone (i.e., pH adjustment) applications. The dissolved inorganic nitrogen concentration did not differ among the groups, but the dissolved organic carbon, total dissolved nitrogen, and δ15N-NO3- were higher in the oil palm area than in the forested area. Although the nitrogen concentration was low, even in the oil palm area, the significantly higher δ15N-NO3- in the oil palm area indicated substantial denitrification. This implies that denitrification contributed to the lowering of the NO3- concentration in rivers in the oil palm area, in addition to nutrient uptake by oil palm trees.
  14. Filho WL, Balogun AL, Olayide OE, Azeiteiro UM, Ayal DY, Muñoz PDC, et al.
    Sci Total Environ, 2019 Nov 20;692:1175-1190.
    PMID: 31539949 DOI: 10.1016/j.scitotenv.2019.07.227
    Many cities across the world are facing many problems climate change poses to their populations, communities and infrastructure. These vary from increased exposures to floods, to discomfort due to urban heat, depending on their geographical locations and settings. However, even though some cities have a greater ability to cope with climate change challenges, many struggle to do so, particularly in cities in developing countries. In addition, there is a shortage of international studies which examine the links between climate change adaptation and cities, and which at the same time draw some successful examples of good practice, which may assist future efforts. This paper is an attempt to address this information need. The aim of this paper is to analyse the extent to which cities in a sample of developing countries are attempting to pursue climate change adaptation and the problems which hinder this process. Its goal is to showcase examples of initiatives and good practice in transformative adaptation, which may be replicable elsewhere. To this purpose, the paper describes some trends related to climate change in a set of cities in developing countries across different continents, including one of the smallest capital cities (Georgetown, Guyana) and Shanghai, one the world's most populous cities. In particular, it analyses their degree of vulnerability, how they manage to cope with climate change impacts, and the policies being implemented to aid adaptation. It also suggests the use of transformative approaches which may be adopted, in order to assist them in their efforts towards investments in low-carbon and climate-resilient infrastructure, thereby maximizing investments in urban areas and trying to address their related poverty issues. This paper addresses a gap in the international literature on the problems many cities in developing countries face, in trying to adapt to a changing climate.
  15. Zheng Y, Ooi MCG, Juneng L, Wee HB, Latif MT, Nadzir MSM, et al.
    Sci Total Environ, 2023 Nov 25;901:166430.
    PMID: 37607626 DOI: 10.1016/j.scitotenv.2023.166430
    Climate change is thought to influence the composition of atmospheric air, but little is known about the direct relationship between these variables, especially in a hot tropical climate like that of Malaysia. This work summarizes and analyzes the climate state and air quality of Peninsular Malaysia based on selected ground-based observations of the temperature, precipitation, relative humidity, wind speed, wind direction and concentrations of PM10, O3, CO, NO2, and SO2 over the last 20 years (2000-2019). The relationship between the climate state and air quality is analyzed using the Pearson correlation and canonical correlation analysis (CCA) methods is employed to predict the degree of change in the future air quality under different warming scenarios. It is found that the Peninsular Malaysia mainly experienced strong precipitation in the central and mountainous regions, while air pollutants are primarily concentrated in densely populated areas. Throughout the period of study (interannual, monthly, and diurnal time series analyses), Peninsular Malaysia became warmer and drier, with a significant increase in temperature (+4.2 %), decrease in the relative humidity (-4.5 %), and greater fluctuation in precipitation amount. The pollution conditions have worsened; there has been an increase in the PM10 (+16.4 %), O3 (+39.5 %), and NO2 (+2.1 %) concentration over the last 20 years. However, the amount of SO2 (-53.6 %) and CO (-20.6 %) decreased significantly. The analysis of the monthly variation shows a strong bimodality of the PM10 and O3 concentrations that corresponds to the monsoon transition. Intensive diurnal fluctuations and correlations are observed for all the variables in this study. According to the CCA, the air quality factors are strongly correlated with meteorological factors; in particular, the CO, O3, and PM10 concentrations interact strongly with the air temperature. These findings show that the future air quality in Peninsular Malaysia has high possibility to deteriorate under warming condition.
  16. Wang M, Fu X, Zhang D, Chen F, Liu M, Zhou S, et al.
    Sci Total Environ, 2023 Jul 01;880:163470.
    PMID: 37076008 DOI: 10.1016/j.scitotenv.2023.163470
    Global climate change and rapid urbanization, mainly driven by anthropogenic activities, lead to urban flood vulnerability and uncertainty in sustainable stormwater management. This study projected the temporal and spatial variation in urban flood susceptibility during the period 2020-2050 on the basis of shared socioeconomic pathways (SSPs). A case study in Guangdong-Hong Kong-Macao Greater Bay Area (GBA) was conducted for verifying the feasibility and applicability of this approach. GBA is predicted to encounter the increase in extreme precipitation with high intensity and frequency, along with rapid expansion of constructed areas, resulting in exacerbating of urban flood susceptibility. The areas with medium and high flood susceptibility will be expected to increase continuously from 2020 to 2050, by 9.5 %, 12.0 %, and 14.4 % under SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios, respectively. In terms of the assessment of spatial-temporal flooding pattern, the areas with high flood susceptibility are overlapped with that in the populated urban center in GBA, surrounding the existing risk areas, which is consistent with the tendency of construction land expansion. The approach in the present study will provide comprehensive insights into the reliable and accurate assessment of urban flooding susceptibility in response to climate change and urbanization.
  17. Kafy AA, Bakshi A, Saha M, Al Faisal A, Almulhim AI, Rahaman ZA, et al.
    Sci Total Environ, 2023 Jan 09.
    PMID: 36634773 DOI: 10.1016/j.scitotenv.2023.161394
    The consequences of droughts are far-reaching, impacting the natural environment, water quality, public health, and accelerating economic losses. Applications of remote sensing techniques using satellite imageries can play an influential role in identifying drought severity (DS) and impacts for a broader range of areas. The Barind Tract (BT) is a region of Bangladesh located northwest of the country and considered one of the hottest, semi-arid, and drought-prone regions. This study aims to assess and predict the drought vulnerability over BT using Landsat satellite images from 1996 to 2031. Several indices, including Normalized Difference Vegetation Index (NDVI), Modified Normalized Difference Water Index (MNDWI), Soil Moisture Content (SMC), Temperature Condition Index (TCI), Vegetation Condition Index (VCI), and Vegetation Health Index (VHI). VHI has been used to identify and predict DS based on VCI and TCI characteristics for 2026 and 2031 using Cellular Automata (CA)-Artificial Neural Network (ANN) algorithms. Results suggest increasing patterns of DS accelerated by the reduction of healthy vegetation (19 %) and surface water bodies (26 %) and increased higher temperature (>5 °C) from 1996 to 2021. In addition, the VHI result signifies a massive increase in extreme drought conditions from 1996 (2 %) to 2021 (7 %). The DS prediction witnessed a possible expansion in extreme and severe drought conditions in 2026 (15 % and 13 %) and 2031 (18 % and 24 %). Understanding the possible impacts of drought will allow planners and decision-makers to initiate mitigating measures for enhancing the communities preparedness to cope with drought vulnerability.
  18. Ng CY, Wan Jaafar WZ, Othman F, Lai SH, Mei Y, Juneng L
    Sci Total Environ, 2024 Mar 20;917:170249.
    PMID: 38278251 DOI: 10.1016/j.scitotenv.2024.170249
    An effective drought monitoring tool is essential for the development of timely drought early warning system. This study evaluates Evaporative Demand Drought Index (EDDI) as a drought indicator in measuring spatiotemporal evolution of droughts over Peninsular Malaysia during 1989-2018. The modified Mann-Kendall and Sen's slope tests were performed to detect the presence of monotonic trends in EDDI, Standardized Precipitation Index (SPI), Standardized Precipitation Evapotranspiration Index (SPEI) and their related climate variables. The performance of EDDI in capturing the drought onset, evolutions and demise of historical severe droughts was also compared with SPI and SPEI at multiple timescales. EDDI demonstrates strong spatiotemporal correlations with SPI and SPEI and comparable performance in historical drought events identification. At sub-monthly timescale, 2-week EDDI displays equivalent drought severities and durations for all historical severe droughts corresponding to the monthly EDDI. In the case when rainfall deficits are normalized in an otherwise warm and dry month, EDDI may serve as a great alternative to SPI and SPEI due to it being sensitive to the changes in prevalent atmospheric conditions. Collectively, the results fill in the knowledge gaps on drought evolutions from the evaporative perspective and highlight the efficacy of EDDI as a valuable drought early warning tool for Peninsular Malaysia. Future study should explore the physical mechanisms behind the development of flash drought and the role of evaporation in the drought propagation processes.
  19. Wong HL, Garthwaite DG, Ramwell CT, Brown CD
    Sci Total Environ, 2018 Apr 01;619-620:874-882.
    PMID: 29734633 DOI: 10.1016/j.scitotenv.2017.11.127
    This study investigates how field practices in handling and applying pesticides influence the long-term patterns of professional agricultural operators' exposure to pesticides. It presents the first use of a comprehensive pesticide application dataset collected on behalf of the European Food Safety Authority with 50 operators selected to cover arable and orchard cropping systems in Greece, Lithuania and the UK. Exposure was predicted based on the harmonised Agricultural Operator Exposure Model (AOEM) and compared with Acceptable Operator Exposure Levels (AOELs). The amount of pesticides handled by individual operators across a cropping season was largest in the UK arable and orchard systems (median 580 and 437kg active substance, respectively), intermediate for the arable systems in Greece and Lithuania (151 and 77kg, respectively), and smallest in the Greek orchard system (22kg). Overall, 30 of the 50 operators made at least one application within a day with predicted exposure greater than the AOEL. The rate of AOEL exceedance was greatest in the Greek cropping systems (8 orchard operators, 2.8-16% of total applications; 7 arable operators, 1.1-14% of total applications), and least for the Lithuanian arable system (2 operators, 2.9-4.5% of total applications). Instances in Greece when predicted exposure exceed the AOEL were strongly influenced by the widespread use of wettable powder formulations (>40% of the total pesticide active substance handled for 11 of the 20 Greek operators). In contrast, the total area of land treated with an active substance on a single day was more important in the UK and Lithuania (95th percentile observed value was 132 and 19haday-1 for UK arable and orchard systems, respectively). Study findings can be used to evaluate current assumptions in regulatory exposure calculations and to identify situations with potential risk that require further analysis including measurements of exposure to validate model estimations.
  20. Abu-Alnaeem MF, Yusoff I, Ng TF, Alias Y, Raksmey M
    Sci Total Environ, 2018 Feb 15;615:972-989.
    PMID: 29751448 DOI: 10.1016/j.scitotenv.2017.09.320
    A comprehensive study was conducted to identify the salinization origins and the major hydrogeochemical processes controlling the salinization and deterioration of the Gaza coastal aquifer system through a combination approaches of statistical and geostatistical techniques, and detailed hydrogeochemical assessments. These analyses were applied on ten physicochemical variables for 219 wells using STATA/SE12 and Surfer softwares. Geostatistical analysis of the groundwater salinity showed that seawater intrusion along the coastline, and saltwater up-coning inland highly influenced the groundwater salinity of the study area. The hierarchical cluster analysis (HCA) technique yielded seven distinct hydrogeochemical signature clusters; (C1&C2: Eocene brackish water invasion, C3 saltwater up-coning, C4 human inputs, C5 seawater intrusion, C6 & C7 rainfall and mixing inputs). Box plot shows a wide variation of most of the ions while Chadha's plot elucidates the predominance of Na-Cl (71.6%) and Ca/Mg-Cl (25%) water types. It is found that, the highest and the lowest levels of salinization and the highest level of nitrate pollution were recorded in the northern area. This result reflects the sensitivity of this area to the human activities and/or natural actions. Around 90.4% of the wells are nitrate polluted. The main source of nitrate pollution is the sewage inputs while the farming inputs are very limited and restricted mostly in the sensitive northern area. Among the hydrogeochemical processes, ion exchange process was the most effective process all over the study area. Carbonate dissolution was common in the study area with the highest level in clusters 6, 7, 4 and 2 in the north while Gypsum dissolution was significant only in cluster 1 in the south and limited in the other clusters. This integrated multi-techniques research should be of benefit for effective utilization and management of the Gaza coastal aquifer system as well as for future work in other similar aquifers systems.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links