Displaying publications 41 - 60 of 104 in total

Abstract:
Sort:
  1. Kang AY, Park AY, Shin HJ, Khan NA, Maciver SK, Jung SY
    Exp Parasitol, 2018 Sep;192:19-24.
    PMID: 30031120 DOI: 10.1016/j.exppara.2018.07.009
    Amoebae from the genus Acanthamoeba are facultative pathogens of humans and other animals. In humans they most frequently infect the eye causing a sight threatening infection known as Acanthamoeba keratitis (AK), and also cause an often fatal encephalitis (GAE). A mannose-binding protein (MBP) has been identified as being important for Acanthamoeba infection especially in AK. This lectin has previously been characterized from Acanthamoeba castellanii as consisting of multiple 130 kDa subunits. MBP expression correlates with pathogenic potential and is expressed in a number of Acanthamoeba species. Here we report the purification of a similar lectin from Acanthamoeba culbertsoni and the production of a monoclonal antibody to it. The A. culbertsoni MBP was isolated by affinity chromatography using α-D-mannose agarose and has an apparent molecular weight of 83 kDa. The monoclonal antibody is an IgM that is useful in both western blots and immunofluorescence. We expect that this antibody will be useful in the study of the pathology of A. culbertsoni and in its identification in clinical samples.
    Matched MeSH terms: Antigens, Protozoan/immunology
  2. Kano S, Onda T, Matsumoto Y, Buchachart K, Krudsood S, Looareesuwan S, et al.
    PMID: 9886125
    It was reported that a 47kDa antigenic polypeptide of Plasmodium falciparum had been strongly presented by the sera from 1) imported Japanese malaria patients with severe symptoms and 2) symptomatic and parasitemic inhabitants in endemic areas in the Sudan, Malaysia and the Philippines. In the present study, we observed the reactivity of the sera from falciparum malaria patients who had been hospitalized in the Bangkok Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, and compared the antibody response against the 47kDa antigenic polypeptide according to the severity of the patients. It was observed that antibodies to this molecule were more commonly shared in sera from severer patients, although the IFAT titers against the whole P. falciparum parasite antigen were lower in the group, which suggested that this antibody against the 47kDa molecule was playing a specific role at a severe stage of the infection. Determination of the immunological features of the antigenic molecules of parasites by this type of sero-epidemiological study will provide a new assay system for evaluation of immune status of individuals in different severity and suggest a way of vaccine development.
    Matched MeSH terms: Antigens, Protozoan/immunology*
  3. Khaw LT, Ball HJ, Mitchell AJ, Grau GE, Stocker R, Golenser J, et al.
    Exp Parasitol, 2014 Oct;145:34-41.
    PMID: 25045850 DOI: 10.1016/j.exppara.2014.07.002
    We here describe the novel finding that brain endothelial cells in vitro can stimulate the growth of Plasmodium falciparum through the production of low molecular weight growth factors. By using a conditioned medium approach, we show that the brain endothelial cells continued to release these factors over time. If this mirrors the in vivo situation, these growth factors potentially would provide an advantage, in terms of enhanced growth, for sequestered parasitised red blood cells in the brain microvasculature. We observed this phenomenon with brain endothelial cells from several sources as well as a second P. falciparum strain. The characteristics of the growth factors included: <3 kDa molecular weight, heat stable, and in part chloroform soluble. Future efforts should be directed at identifying these growth factors, since blocking their production or actions might be of benefit for reducing parasite load and, hence, malaria pathology.
    Matched MeSH terms: Antigens, Protozoan/analysis; Antigens, Protozoan/metabolism
  4. Kotresha D, Noordin R
    APMIS, 2010 Aug;118(8):529-42.
    PMID: 20666734 DOI: 10.1111/j.1600-0463.2010.02629.x
    Toxoplasma gondii is an important human pathogen with a worldwide distribution. It is primarily of medical importance for pregnant women and immunocompromised patients. Primary infection of the former is often associated with fetal infection, which can lead to abortion or severe neonatal malformation. Immunocompromised patients are at risk of contracting the severe form of the disease that may be fatal. Thus, detection of T. gondii infection with high sensitivity and specificity is crucial in the management of the disease. Toxoplasmosis is generally diagnosed by demonstrating specific immunoglobulin M (IgM) and IgG antibodies to toxoplasma antigens in the patient's serum sample. Most of the commercially available tests use T. gondii native antigens and display wide variations in test accuracy. Recombinant antigens have great potential as diagnostic reagents for use in assays to detect toxoplasmosis. Thus in this review, we address recent advances in the use of Toxoplasma recombinant proteins for serodiagnosis of toxoplasmosis.
    Matched MeSH terms: Antigens, Protozoan/immunology*
  5. Lai MY, Abdul-Majid N, Lau YL
    Acta Parasitol, 2019 Sep;64(3):575-581.
    PMID: 31165984 DOI: 10.2478/s11686-019-00066-4
    Toxoplasma gondii is one of the most successful human pathogens. To eliminate the infection, identification of receptors or binding partners from humans is indeed urgent. T. gondii surface antigen is the ultimate component involved during the attachment of parasite into host cell. However, mechanism of invasion between SAG and host-cell membrane remains unclear. Yeast two-hybrid experiment was used to identify the binding partners from cDNA human library by using T. gondii SAG1 as bait. Mated yeast cells were plated on DDO/X plates to confirm only prey plasmid that expressing interacting protein was selected. We detected 39 clones interacted with SAG1 based on a series of the selection procedures. After colony PCR, only 29 clones were positive and subsequently sent for sequencing. The yeast plasmids for true positive clones were rescued by transformation into E. coli TOP 10F' cells. Twenty-two clones were further examined by small-scale Y2H experiment. The results indicated that a strong interaction existed between Homo sapiens lysine-rich coil-coiled and SAG1 protein, which could activate the expressions of the reporter genes in diploid yeast. Co-immunoprecipitation experiment result indicated the binding between this prey and SAG1 protein was significant (Mann-Whitney U test, Z = - 1.964, P = 0.05). H. sapiens lysine-rich coil-coiled protein was found to be interacted with SAG1. This prey protein may serve as the potential drug target in vaccination study.
    Matched MeSH terms: Antigens, Protozoan/genetics; Antigens, Protozoan/metabolism*
  6. Latif BM, Jakubek EB
    Trop Biomed, 2008 Dec;25(3):225-31.
    PMID: 19287361
    Flourescent antibody test (FAT) was applied to determine the cross-reactivities of monoclonal (mAb), polyclonal (pAb) antibodies to Neospora, Toxoplasma and Cryptosporidium and antisera from cattle naturally infected with Neospora canium against antigens from a number of sources. Both mAb and pAb to Neospora reacted strongly (FAT titre up to 2560) with the homologous antigens and demonstrated weak titre (80) or no reaction with both Toxoplasma and Cryptosporidium antigens. Also mAb and pAb to Toxoplasma gondii reacted at titres of 80 - 640 with homologous antigens and at titres of 10-40 with N. caninum. No cross-reactions with either mAb or pAb antibodies to N. caninum and T. gondii were observed with Cryptosporidium parvum. The same results were observed with C. parvum mAb when tested with both N. caninum and T. gondii antigens. Sera from cattle naturally infected with N. caninum had titres ranging from 80- 640 with N. caninum antigens, and 10- 40 with T. gondii and C. parvum antigens. At low dilutions, the complete surfaces of Neospora and Toxoplasma parasites were fluorescent, while in higher dilutions only dotted fluorescence appeared on the apical complex. These results indicated the presence of cross-reactivity between Neospora and Toxoplasma but not with Cryptosporidium. Accordingly the recommended cut-off antibody titre for diagnosis of neosporosis is 80.
    Matched MeSH terms: Antigens, Protozoan/immunology*
  7. Lau YL, Fong MY, Idris MM, Ching XT
    PMID: 23082548
    Detection of Toxoplasma gondii infection is essential in pregnant women and immunosuppressed patients. Numerous studies have shown that the recombinant production of several Toxoplasma antigens, including dense granule antigens (GRAs) has high potential as diagnostic reagents. In the present study, we produced GRA2 using Pichia pastoris system. RNA of T. gondii RH strain tachyzoite was used as a template to produce cDNA clones of full-length GRA2 via reverse transcriptase PCR. Amplicons were inserted into pPICZalpha A and the recombinant plasmid transformed into P. pastoris, X-33 strain. The expressed recombinant protein was identified by SDS-PAGE and Western blotting. A recombinant protein of -28 kDa was produced, which could be detected by toxoplasmosis positive human sera indicating that the recombinant protein retained its antigenicity. The present study indicates that P. pastoris-expressed GRA2 should be useful for detection of Toxoplasma infection.
    Matched MeSH terms: Antigens, Protozoan/genetics*; Antigens, Protozoan/metabolism
  8. Lau YL, Fong MY, Mahmud R, Chang PY, Palaeya V, Cheong FW, et al.
    Malar J, 2011;10:197.
    PMID: 21774805 DOI: 10.1186/1475-2875-10-197
    The emergence of Plasmodium knowlesi in humans, which is in many cases misdiagnosed by microscopy as Plasmodium malariae due to the morphological similarity has contributed to the needs of detection and differentiation of malaria parasites. At present, nested PCR targeted on Plasmodium ssrRNA genes has been described as the most sensitive and specific method for Plasmodium detection. However, this method is costly and requires trained personnel for its implementation. Loop-mediated isothermal amplification (LAMP), a novel nucleic acid amplification method was developed for the clinical detection of P. knowlesi. The sensitivity and specificity of LAMP was evaluated in comparison to the results obtained via microscopic examination and nested PCR.
    Matched MeSH terms: Antigens, Protozoan/genetics
  9. Lau YL, Thiruvengadam G, Lee WW, Fong MY
    Parasitol Res, 2011 Sep;109(3):871-8.
    PMID: 21455621 DOI: 10.1007/s00436-011-2315-6
    In this study, we successfully expressed a chimerical surface antigen 1 and 2 (SAG1/2) of Toxoplasma gondii in Pichia pastoris. Eighty human serum samples, including 60 from confirmed cases of toxoplasmosis, were tested against the purified recombinant SAG1/2 in Western blots. Results of Western blots targeted at Toxoplasma IgG and IgM showed that the recombinant SAG1/2 reacted with all sera from the toxoplasmosis cases but none with the Toxoplasma-negative serum samples. These results showed that the P. pastoris-derived recombinant SAG1/2 was sensitive and specific and suitable for use as antigen for detecting anti-Toxoplasma antibodies. To further investigate the immunological characteristic of the recombinant protein, the recombinant SAG1/2 was injected subcutaneously into BALB/c mice, and their serum was tested against total protein lysate of T. gondii. Mice immunized with the recombinant SAG1/2 reacted specifically with the native SAG1 and SAG2 of T. gondii. Significant proliferation of splenocytes stimulated with tachyzoite total protein lysate was observed in vaccinated BALB/c mice but not in those from negative control mice. Specific production of IFN-γ, the Th1-type cytokines, was also found in stimulated splenocytes from vaccinated mice. These results show that the chimeric protein recombinant SAG1/2 can elicit a Th1-associated protection against T. gondii infections in mice. Finally, vaccinated mice were significantly protected against lethal challenge with live T. gondii RH strain tachyzoites (P 
    Matched MeSH terms: Antigens, Protozoan/genetics; Antigens, Protozoan/immunology*
  10. Lau YL, Fong MY
    Exp Parasitol, 2008 Jul;119(3):373-8.
    PMID: 18457835 DOI: 10.1016/j.exppara.2008.03.016
    The full length surface antigen 2 (SAG2) gene of the protozoan parasite Toxoplasma gondii was cloned and intracellularly expressed in the Pichia pastoris expression system. The molecular weight of the expressed recombinant SAG2 (36 kDa) was much larger than the native SAG2 (22 kDa). This discrepancy in size was due to hyperglycosylation, as deglycosylation assay reduced the size of the recombinant SAG2 to 22 kDa. Despite being hyperglycosylated, the recombinant SAG2 reacted strongly with pooled anti-Toxoplasma human serum, pooled anti-Toxoplasma mouse serum and a SAG2-specific monoclonal antibody. The glycosylated recombinant SAG2 was further evaluated in Western blot and in-house enzyme-linked immunosorbent assay (ELISA) using 80 human serum samples, including confirmed early acute (IgM positive, IgG negative; n=20), acute (IgM positive, IgG positive; n=20) and chronic (IgM negative, IgG positive; n=20) toxoplasmosis patients, and toxoplasmosis negative control patients (n=20). Results of the Western blot showed that the recombinant SAG2 reacted with all 60 samples of the toxoplasmosis cases but not with the Toxoplasma-negative samples. The sensitivity of in-house ELISA was 80%, 95% and 100% for early acute, acute and chronic patients' serum samples, respectively. Vaccination study showed that serum from mice immunised with the glycosylated recombinant SAG2 reacted specifically with the native SAG2 of T. gondii. The mice were significantly protected against lethal challenge with live T. gondii RH strain tachyzoites (P<0.01) and their survival time was increased compared to controls. Therefore, the present study shows that the P. pastoris-derived recombinant SAG2 was specific and suitable for use as antigen for detecting anti-Toxoplasma IgG and IgM antibodies. The vaccination study showed that recombinant SAG2 protein was immunoprotective in mice against lethal challenge.
    Matched MeSH terms: Antigens, Protozoan/genetics; Antigens, Protozoan/immunology*; Antigens, Protozoan/metabolism
  11. Lau YL, Shamilah H, Fong MY
    Trop Biomed, 2006 Dec;23(2):186-93.
    PMID: 17322821 MyJurnal
    A truncated form of surface antigen 2 (SAG2) of the protozoan parasite Toxoplasma gondii was cloned and expressed in the methylotrophic yeast Pichia pastoris. This recombinant antigen, designated as recSAG2-N, contained only the N-terminal half of the native SAG2. The recSAG2-N was secreted by the Pichia pastoris into the culture supernatant, and it was harvested by using the trichloroacetic acid precipitation method. Specificity of recSAG2-N was evaluated in western blot assays. Fifty human serum samples, including 32 from confirmed cases of toxoplasmosis, were tested. Results from the assays showed that recSAG2-N reacted with sera from the toxoplasmosis cases only. In vivo experiments showed that serum from mice which received recSAG2-N reacted with the native SAG2 of T. gondii.
    Matched MeSH terms: Antigens, Protozoan/metabolism*
  12. Lau YL, Meganathan P, Sonaimuthu P, Thiruvengadam G, Nissapatorn V, Chen Y
    J Clin Microbiol, 2010 Oct;48(10):3698-702.
    PMID: 20660217 DOI: 10.1128/JCM.00462-10
    Loop-mediated isothermal amplification (LAMP), a rapid nucleic acid amplification method, was developed for the clinical diagnosis of toxoplasmosis. Three LAMP assays based on the SAG1, SAG2, and B1 genes of Toxoplasma gondii were developed. The sensitivities and specificities of the LAMP assays were evaluated by comparison with the results of conventional nested PCR. The LAMP assays were highly sensitive and had a detection limit of 0.1 tachyzoite, and no cross-reactivity with the DNA of other parasites was observed. Blood was collected from 105 individuals to test the LAMP assays: 40 patients with active toxoplasmosis, 40 negative controls, and 25 patients with other parasitic infections. The SAG2-based LAMP (SAG2-LAMP) had a greater sensitivity (87.5%) than the SAG1-LAMP (80%), B1-LAMP (80%), and nested PCR (62.5%). All the LAMP assays and nested PCR were 100% specific. This is the first report of a study which applied the LAMP method to diagnose toxoplasmosis from human blood samples. Due to its simplicity, sensitivity, and specificity, LAMP is suggested as an appropriate method for routine diagnosis of active toxoplasmosis in humans.
    Matched MeSH terms: Antigens, Protozoan/genetics
  13. Lee M, Davis DR, Ballou WR, Folena-Wasserman G, Lewis GE
    Am J Trop Med Hyg, 1988 Dec;39(6):535-9.
    PMID: 3061309
    A seroepidemiologic survey of Plasmodium vivax and Plasmodium falciparum transmission was conducted in 94 Orang Asli children and adults. The prevalence of malaria was 46% in this population, and infections due to P. vivax and P. falciparum occurred with equal frequency. Multi-species infection was common, particularly in children less than 10 years of age. Circumsporozoite (CS) antibodies to P. vivax were detected by ELISA, using the recombinant protein NS181V20, in sera from 53-95% of all subjects in this study. The specificity of reactivity to NS181V20 was confirmed by immunofluorescence using air-dried sporozoites. CS antibodies to P. falciparum were present in less than 50% of the population less than 30 years of age. These data support further testing of this protein as a candidate vivax vaccine.
    Matched MeSH terms: Antigens, Protozoan/immunology*
  14. Lee M, Harrison BA, Lewis GE
    Am J Trop Med Hyg, 1990 Apr;42(4):314-9.
    PMID: 2184690 DOI: 10.4269/ajtmh.1990.42.314
    A modified version of the standard 2-site sporozoite enzyme-linked immunosorbent assay (ELISA) using 3,3',5,5'-tetramethylbenzidine (TMB) as the substrate chromogen solution was adapted for rapid detection and identification of Plasmodium falciparum and P. vivax circumsporozoite (CS) proteins. The TMB-ELISA was evaluated using sporozoites from experimentally infected mosquitoes and laboratory colonized uninfected mosquitoes. Our data indicate comparable sensitivity levels between the TMB-ELISA and the standard ELISA, i.e., 50 P. falciparum or P. vivax sporozoites/50 microliters of test solution. Reactions inherent to the method were specific and background reactivity was minimal. The TMB-ELISA is rapid (1 hr), simple, uses a minimal amount of monoclonal antibodies, and is suitable for use in a wide range of laboratories.
    Matched MeSH terms: Antigens, Protozoan/analysis*
  15. Lew MH, Noordin R, Monsur Alam Khan M, Tye GJ
    Pathog Glob Health, 2018 10;112(7):387-394.
    PMID: 30332344 DOI: 10.1080/20477724.2018.1536854
    Toxoplasmosis, a parasitic disease in human and animals, is caused by Toxoplasma gondii. Our previous study has led to the discovery of a novel RAP domain binding protein antigen (TgRA15), an apparent in-vivo induced antigen recognised by antibodies in acutely infected individuals. This study is aimed to evaluate the humoral response and cytokine release elicited by recombinant TgRA15 protein in C57BL/6 mice, demonstrating its potential as a candidate vaccine for Toxoplasma gondii infection. In this study, the recombinant TgRA15 protein was expressed in Escherichia coli, purified and refolded into soluble form. C57BL/6 mice were immunised intradermally with the antigen and CASAC (Combined Adjuvant for Synergistic Activation of Cellular immunity). Antigen-specific humoral and cell-mediated responses were evaluated using Western blot and ELISA. The total IgG, IgG1 and IgG2a antibodies specific to the antigen were significantly increased in treatment group compare to control group. A higher level of interferon gamma (IFN-γ) secretion was demonstrated in the mice group receiving booster doses of rTgRA15 protein, suggesting a potential Th1-mediated response. In conclusion, the rTgRA15 protein has the potential to generate specific antibody response and elicit cellular response, thus potentially serve as a vaccine candidate against T. gondii infection.
    Matched MeSH terms: Antigens, Protozoan/immunology
  16. Liew CC, Lau YL, Fong MY, Cheong FW
    Am J Trop Med Hyg, 2020 05;102(5):1068-1071.
    PMID: 32189613 DOI: 10.4269/ajtmh.19-0836
    Invasion of human erythrocytes by merozoites of Plasmodium knowlesi involves interaction between the P. knowlesi Duffy binding protein alpha region II (PkDBPαII) and Duffy antigen receptor for chemokines (DARCs) on the erythrocytes. Information is scarce on the binding level of PkDBPαII to different Duffy antigens, Fya and Fyb. This study aims to measure the binding level of two genetically distinct PkDBPαII haplotypes to Fy(a+b-) and Fy(a+b+) human erythrocytes using erythrocyte-binding assay. The binding level of PkDBPαII of Peninsular Malaysian and Malaysian Borneon haplotypes to erythrocytes was determined by counting the number of rosettes formed in the assay. Overall, the Peninsular Malaysian haplotype displayed higher binding activity than the Malaysian Borneon haplotype. Both haplotypes exhibit the same preference to Fy(a+b+) compared with Fy(a+b-), hence justifying the vital role of Fyb in the binding to PkDBPαII. Further studies are needed to investigate the P. knowlesi susceptibility on individuals with different Duffy blood groups.
    Matched MeSH terms: Antigens, Protozoan/genetics*; Antigens, Protozoan/immunology; Antigens, Protozoan/metabolism
  17. Lim PK, Mak JW, Yong HS
    PMID: 1298082
    Two monoclonal antibodies (MAbs), one produced against Plasmodium falciparum (PF-IG8) and the other against P. cynomolgi (PC-IE12) schizont antigens were used in a sandwich ELISA for the detection of circulating plasmodial antigens in sera of patients infected with either P. falciparum, P. vivax or P. malariae. The mean +/- SD optical density (OD) values for the normal control group using PF-108 and PC-1E12 were 0.351 +/- 0.036 and 0.205 +/- 0.044, respectively. Mean OD values for the three infected groups were found to be significantly higher than those of the normal control group for both MAbs. However, ELISA values for individual serum specimens did not correlate with the level of parasitemia in the infected blood. Using a cut-off point of mean OD +/- 3 SD of the normal control group as indicating a positive reading, the specificity of this assay with both MAbs was 100%. The sensitivity of the assay using PF-1G8 was 95% while that obtained with PC-1E12 was 98%.
    Matched MeSH terms: Antigens, Protozoan/blood*
  18. Ling LY, Ithoi I, Yik FM
    PMID: 20578535
    SAG2 is one of the major surface antigens of the intracellular protozoan parasite Toxoplasma gondii. In the present study, truncated recombinant SAG2(S) and full length recombinant SAG2(T) of T. gondii were optimally produced (approximately 15 mg/liter) in Pichia pastoris expression system using BMMY medium at pH 3, 25 degrees C in 0.5-1% methanol and a time-course of 1-2 days. The recombinant proteins were purified using a commercial gel filtration purification system obtaining approximately 33% recovery. The purified SAG2(S) and SAG2(T) showed molecular masses of 45 and 36 kDa by SDS-PAGE, respectively. The recombinant proteins were evaluated by Western blotting with patients' sera and demonstrated 90% sensitivity and 100% specificity for detection of toxoplasmosis. This study provided a means for large-scale expression and purification of SAG2, which should be useful for diagnosis of toxoplasmosis.
    Matched MeSH terms: Antigens, Protozoan/biosynthesis*
  19. Loh FK, Nathan S, Chow SC, Fang CM
    Pathog Glob Health, 2021 09;115(6):392-404.
    PMID: 33525974 DOI: 10.1080/20477724.2021.1881369
    The proficiency of Salmonella Typhi to induce cell-mediated immunity has allowed its exploitation as a live vector against the obligate intracellular protozoan Toxoplasma gondii. T. gondii vaccine research is of great medical value due to the lack of a suitable toxoplasmosis vaccine. In the present work, we integrated T. gondii antigen into a growth-dependent chromosome locus guaBA of S. Typhi CVD910 strain to form recombinant S. Typhi monovalent CVD910-SAG1 expressed T. gondii SAG1 antigen and monovalent CVD910-GRA2 expressed T. gondii GRA2 antigen. Furthermore, a low-copy stabilized recombinant plasmid encoding SAG1 antigen was transformed into CVD910-GRA2 to form bivalent CVD910-GS strain. An osmolarity-regulated promoter was also incorporated to control the gene transcription, whereas clyA export protein was included to translocate the antigen out of the cytoplasm. Both CVD910-GRA2 and CVD910-GS displayed healthy growth fitness and readily expressed the encoded T. gondii antigens. When administered in vivo, CVD910-GS successfully induced both humoral and cellular immunity in the immunized BALB/c mice, and extended mice survival against virulent T. gondii. In particular, the mice immunized with bivalent CVD910-GS presented the highest titers of IgG, percentages of CD4+ T, CD8+ T, B cells and memory T cells, and total IgG+ memory B cells as compared to the CVD910-GRA2 and control strains. The CVD910-GS group also generated mixed Th1/Th2 cytokine profile with secretions of IFN-ɣ, IL-2 and IL-10. This study demonstrated the importance of enhancing live vector fitness to sustain heterologous antigen expression for eliciting robust immune responses and providing effective protection against pathogen.
    Matched MeSH terms: Antigens, Protozoan/genetics
  20. Lokanathan Y, Mohd-Adnan A, Kua BC, Nathan S
    J Fish Dis, 2016 Sep;39(9):1069-83.
    PMID: 27086498 DOI: 10.1111/jfd.12474
    Cryptocaryonosis is a major problem for mariculture, and the absence of suitable sero-surveillance tools for the detection of cryptocaryonosis makes it difficult to screen Cryptocaryon irritans-infected fish, particularly asymptomatic fish. In this study, we proposed a serum-based assay using selected C. irritans proteins to screen infected and asymptomatic fish. Eight highly expressed genes were chosen from an earlier study on C. irritans expressed sequence tags and ciliate glutamine codons were converted to universal glutamine codons. The chemically synthesized C. irritans genes were then expressed in an Escherichia coli expression host under optimized conditions. Five C. irritans proteins were successfully expressed in E. coli and purified by affinity chromatography. These proteins were used as antigens in an enzyme-linked immunosorbent assay (ELISA) to screen sera from experimentally immunized fish and naturally infected fish. Sera from both categories of fish reacted equally well with the expressed C. irritans recombinant proteins as well as with sonicated theronts. This study demonstrated the utility of producing ciliate recombinant proteins in a heterologous expression host. An ELISA was successfully developed to diagnose infected and asymptomatic fish using the recombinant proteins as antigens.
    Matched MeSH terms: Antigens, Protozoan/analysis; Antigens, Protozoan/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links