Displaying publications 41 - 44 of 44 in total

Abstract:
Sort:
  1. Muhialdin BJ, Saari N, Meor Hussin AS
    Molecules, 2020 Jun 07;25(11).
    PMID: 32517380 DOI: 10.3390/molecules25112655
    The challenges to fulfill the demand for a safe food supply are dramatically increasing. Mycotoxins produced by certain fungi cause great economic loss and negative impact on the sustainability of food supplies. Moreover, the occurrence of mycotoxins at high levels in foods poses a high health threat for the consumers. Biological detoxification has exhibited a high potential to detoxify foodstuffs on a cost-effective and large scale. Lactic acid bacteria showed a good potential as an alternative strategy for the elimination of mycotoxins. The current review describes the health and economic impacts associated with mycotoxin contamination in foodstuffs. Moreover, this review highlights the biological detoxification of common food mycotoxins by lactic acid bacteria.
    Matched MeSH terms: Food Technology*
  2. Alhelli AM, Mohammed NK, Khalil ES, Hussin ASM
    AMB Express, 2021 Mar 22;11(1):45.
    PMID: 33751265 DOI: 10.1186/s13568-021-01205-9
    Cheddar cheese proteolysis were accelerated employing Penicillium candidum PCA1/TT031 protease into cheese curd. In the present study, several of the significant factors such as protease purification factor (PF), protease concentration and ripening time were optimized via the response surface methodology (RSM). The ideal accelerated Cheddar cheese environment consisted of 3.12 PF, 0.01% (v/v) protease concentration and 0.6/3 months ripening time at 10 °C. The RSM models was verified to be the most proper methodology for the maintain of chosen Cheddar cheese. Under this experimental environment, the pH, acid degree value (ADV), moisture, water activity (aw), soluble nitrogen (SN)%, fat and overall acceptability were found to be 5.4, 6.6, 35%, 0.9348, 18.8%, 34% and 13.6, respectively of ideal Cheddar cheese. Furthermore, the predicted and experimental results were in significant agreement, which confirmed the validity and reliability of the suggested method. In spite of the difference between the ideal and commercial Cheddar cheese in the concentration of some of amino acids and free fatty acids, the sensory evaluation did not show any significant difference in aroma profile between them.
    Matched MeSH terms: Food Technology
  3. Tan JS, Abbasiliasi S, Lalung J, Tam YJ, Murugan P, Lee CK
    Prep Biochem Biotechnol, 2021;51(3):260-266.
    PMID: 32876520 DOI: 10.1080/10826068.2020.1808793
    This study aimed at purification of phycocyanin (PC) from Phormidium tergestinum using an aqueous two-phase system (ATPS) comprised of polyethylene glycol (PEG) and salts. The partitioning efficiency of PC in ATPS and the effect of phase composition, pH, crude loading, and neutral salts on purification factor and yield were investigated. Results showed that PC was selectively partitioned toward bottom phase of the system containing potassium phosphate. Under optimum conditions of 20% (w/w) PEG 4000, 10% (w/w) potassium phosphate, 20% (v/v) crude load at pH 7, with addition of 0.5% (w/w) NaCl, PC from P. tergestinum was partially purified up to 5.34-fold with a yield of 87.8%. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the molecular weight of PC was ∼19 kDa. Results from this study demonstrated ATPS could be used as a potential approach for the purification of PC from P. tergestinum.
    Matched MeSH terms: Food Technology/methods
  4. Wu H, Sang S, Weng P, Pan D, Wu Z, Yang J, et al.
    Compr Rev Food Sci Food Saf, 2023 Nov;22(6):4217-4241.
    PMID: 37583298 DOI: 10.1111/1541-4337.13217
    Starch-based materials have viscoelasticity, viscous film-forming, dough pseudoplasticity, and rheological properties, which possess the structural characteristics (crystal structure, double helix structure, and layered structure) suitable for three-dimensional (3D) food printing inks. 3D food printing technology has significant advantages in customizing personalized and precise nutrition, expanding the range of ingredients, designing unique food appearances, and simplifying the food supply chain. Precision nutrition aims to consider individual nutritional needs and individual differences, which include special food product design and personalized precise nutrition, thus expanding future food resources, then simplifying the food supply chain, and attracting extensive attention in food industry. Different types of starch-based materials with different structures and rheological properties meet different 3D food printing technology requirements. Starch-based materials suitable for 3D food printing technology can accurately deliver and release active substances or drugs. These active substances or drugs have certain regulatory effects on the gut microbiome and diabetes, so as to maintain personalized and accurate nutrition.
    Matched MeSH terms: Food Technology/methods
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links