Displaying publications 41 - 43 of 43 in total

Abstract:
Sort:
  1. Ngai SC, Rosli R, Nordin N, Veerakumarasivam A, Abdullah S
    Gene, 2012 May 1;498(2):231-6.
    PMID: 22366305 DOI: 10.1016/j.gene.2012.01.071
    Lentivirus (LV) encoding woodchuck posttranscriptional regulatory element (WPRE) and central polypurine tract (cPPT) driven by CMV promoter have been proven to act synergistically to increase both transduction efficiency and gene expression. However, the inclusion of WPRE and cPPT in a lentiviral construct may pose safety risks when administered to human. A simple lentiviral construct driven by an alternative promoter with proven extended duration of gene expression without the two regulatory elements would be free from the risks. In a non-viral gene delivery context, gene expression driven by human polybiquitin C (UbC) promoter resulted in higher and more persistent expression in mouse as compared to cytomegalovirus (CMV) promoter. In this study, we measured the efficiency and persistency of green fluorescent protein (GFP) reporter gene expression in cells transduced with LV driven by UbC (LV/UbC/GFP) devoid of the WPRE and cPPT in comparison to the established LV construct encoding WPRE and cPPT, driven by CMV promoter (LV/CMV/GFP). However, we found that LV/UbC/GFP was inferior to LV/CMV/GFP in many aspects: (i) the titer of virus produced; (ii) the levels of reporter gene expression when MOI value was standardized; and (iii) the transduction efficiency in different cell types. The duration of reporter gene expression in selected cell lines was also determined. While the GFP expression in cells transduced with LV/CMV/GFP persisted throughout the experimental period of 14 days, expression in cells transduced with LV/UbC/GFP declined by day 2 post-transduction. In summary, the LV driven by the UbC promoter without the WPRE and cPPT does not exhibit enhanced or durable transgene expression.
    Matched MeSH terms: Gene Transfer Techniques
  2. Lai MI, Wendy-Yeo WY, Ramasamy R, Nordin N, Rosli R, Veerakumarasivam A, et al.
    J Assist Reprod Genet, 2011 Apr;28(4):291-301.
    PMID: 21384252 DOI: 10.1007/s10815-011-9552-6
    Direct reprogramming of somatic cells into induced pluripotent stem (iPS) cells has emerged as an invaluable method for generating patient-specific stem cells of any lineage without the use of embryonic materials. Following the first reported generation of iPS cells from murine fibroblasts using retroviral transduction of a defined set of transcription factors, various new strategies have been developed to improve and refine the reprogramming technology. Recent developments provide optimism that the generation of safe iPS cells without any genomic modification could be derived in the near future for the use in clinical settings. This review summarizes current and evolving strategies in the generation of iPS cells, including types of somatic cells for reprogramming, variations of reprogramming genes, reprogramming methods, and how the advancement iPS cells technology can lead to the future success of reproductive medicine.
    Matched MeSH terms: Gene Transfer Techniques
  3. Alhaji SY, Ngai SC, Abdullah S
    Biotechnol Genet Eng Rev, 2019 Apr;35(1):1-25.
    PMID: 30514178 DOI: 10.1080/02648725.2018.1551594
    DNA methylation and histone modifications are vital in maintaining genomic stability and modulating cellular functions in mammalian cells. These two epigenetic modifications are the most common gene regulatory systems known to spatially control gene expression. Transgene silencing by these two mechanisms is a major challenge to achieving effective gene therapy for many genetic conditions. The implications of transgene silencing caused by epigenetic modifications have been extensively studied and reported in numerous gene delivery studies. This review highlights instances of transgene silencing by DNA methylation and histone modification with specific focus on the role of these two epigenetic effects on the repression of transgene expression in mammalian cells from integrative and non-integrative based gene delivery systems in the context of gene therapy. It also discusses the prospects of achieving an effective and sustained transgene expression for future gene therapy applications.
    Matched MeSH terms: Gene Transfer Techniques
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links