Displaying publications 41 - 60 of 225 in total

Abstract:
Sort:
  1. Baki S, Tan L, Kan C, Kamari H, Noor A, Mardi M
    Sains Malaysiana, 2014;43:843-850.
    Multicomposition of Er3+ -Y11-3+ codoped tellurite oxide, Te02-ZnO-PbO-Ti02-Na20 glass has been investigated. A detailed spectroscopic study of the Judd-Ofelt analysis has been performed from the measured absorption spectrum in order to obtain the intensity parameters S2, (t=2, 4, 6). The calculated S2, values were then utilized in the determination of transition probabilities, radiative lifetimes and branching ratios of the Er3+ transitions between the J(upper)-J'(lower) manifolds. Both visible upconversion and near-infrared spectra were characterized under the 980 nm laser diode excitation at room temperature.
    Matched MeSH terms: Glass
  2. Sirajuddin N, Md Jamil M
    Sains Malaysiana, 2015;44:811-818.
    Synthetic materials that are capable of healing upon damage are being developed at a rapid pace because of their
    many potential applications. Here, new healing chemically cross-linked hydrogel of poly(2-hydroxyethyl methacrylate)
    (pHEMA) was prepared. The healing hydrogel was achieved by heating above its glass transition (Tg
    ). The intermolecular
    diffusion of dangling chain and the chain slippage led to healing of the gel. The peaks in attenuated total reflectance
    (ATR) confirmed that hydrogel was formed while rheological studies had determined the minimum for healing temperature
    is 48.5o
    C. The results showed that ratio stress of the healable hydrogel can reach until 92 and 91% of first and second
    healing cycle, respectively. The morphology of the sample was carried out to evaluate the self-property of hydrogel.
    Matched MeSH terms: Glass
  3. Normaliza Ab. Malik, Seow LL, Normastura Abd. Rahman, Marhazlinda Jamaludin
    Sains Malaysiana, 2013;42:45-51.
    This study was carried out to evaluate the microleakage of Class II cavities restored with various types of lining materials. Four types of composite resins (Esthet-X-Denstply, USA, FiltekTMZ350-3M ESPE, USA, Beautifil- Shofu, Japan and Solare P-GC, Japan) were used and the lining were the Fuji IXGP (GC, Japan), the Beautifil flow (Shofu, Japan), the FiltexTMZ350 flow (3M ESPE, USA) and the Esthet-X flow (Denstply, USA). All the specimens were thermocycled and immersed in 0.5% basic fuschin dye for 24 h. The microleakage was scored using the ISO microleakage scoring system. The data were entered using SPSS version 12.0 and analyzed using STATA software programme. This study showed that none of the materials used in this study was able to eliminate microleakage. However, it was shown that the glass ionomer cement was better in reducing the incident of microleakage at the cervical margin. Among the flowable composite resin, FiltexTMZ350 flow showed less microleakage at the cervical margin.
    Matched MeSH terms: Glass Ionomer Cements
  4. Normasmira A. Rahman, Aziz Hassan, Yahya R, Lafia-Araga R
    Sains Malaysiana, 2013;42:537-546.
    Hybrid composites of polypropylene (PP)/nanoclay (NC)/glass fiber (GF) were prepared byextrusion and injection molding. Molded specimens were analyzed by transmission electron microscopy (TEM), thermogravimetric analysis (TGA), tensile and flexural tests. TEM results revealed NC particle intercalation. TGA results showed that the incorporation of clay into the GF composite improves the thermal stability of the material. The initial thermal decomposition temperatures also shifted to higher values. Incorporation of GF into PP lowers the tensile strength of the binary composite, indicating poor fiber-matrix interfacial adhesion. However, introducing NC increased the strength of the ternary composites. Tensile modulus was enhanced with the incorporation of GF and further increased with an introduction of NC. Flexural strength and flexural modulus are both enhanced with an increase in GF and NC loading.
    Matched MeSH terms: Glass
  5. Ooi P, Ching C, Ahmad M, Ng S, Abdullah M, Abu Hassan H, et al.
    Sains Malaysiana, 2014;43:617-621.
    Cupric oxide (CuO) thin films were prepared on a glass and silicon (Si) substrates by radio frequency magnetron sputtering system. The structural, optical and electrical properties of CuO films were characterized by X-ray diffraction (xRD), atomic force microscopy (AFM), Fourier transform infrared spectrometer, ultra-violet visible spectrophotometer, respectively, four point probe techniques and Keithley 4200 semiconductor characterization system. The xRD result showed that single phase CuO thin films with monoclinic structure were obtained. AFM showed well organized nano-pillar morphology with root mean square surface roughness for CuO thin films on glass and Si substrates were 3.64 and 1.91 nm, respectively. Infrared reflectance spectra shown a single reflection peak which is corresponding to CuO optical phonon mode and it confirmed that only existence of CuO composition on both substrates. The optical direct band gap energy of the CuO film grown on glass substrate, which is calculated from the optical transmission measurement was 1.37 eV. Finally, it was found that the deposited CuO films are resistive and the palladium formed ohmic contact for CuO on glass and schottky contact for CuO on Si.
    Matched MeSH terms: Glass
  6. Zalina Laili, Muhamad Samudi Yasir, Mohd Abdul Wahab Yusof
    Sains Malaysiana, 2017;46:1617-1623.
    The influence of water-to-cement ratio (w/c) on the compressive strength of cement-biochar-spent resins matrix was
    investigated. Spent resins waste from nuclear reactor operation was solidified using cement with w/c ranging from 0.35
    to 0.90 by weight. In this study, biochar was used as a cement admixture. Some properties of spent resins and biochar
    were determined prior to the formulation study. Compressive strength of harden cement-biochar-spent resins matrix
    was determined at 28 days. The compressive strength of cement-biochar-spent resins matrix was found to depend on the
    w/c and the amount of spent resins added to the formulation. The immersion test of cement-biochar-spent resins matrix
    showed no significant effects of cracking and swelling. The compressive strength of the cement-biochar-spent resins
    matrix increased after two weeks in water immersion test.
    Matched MeSH terms: Glass Ionomer Cements
  7. Mohammad Razaul Karim, Sumiani Yusoff, Hashim Abdul Razak, Faisal I. Chowdhury, Hossain Zabed
    Sains Malaysiana, 2018;47:523-530.
    Technical benefit of incorporation of Palm Oil Clinker (POC) in cement-based applications has been proven in recent
    studies. The aim of this work was to assess the heavy metal leaching behavior to ensure environmental safety of using
    POC in cement-based applications. The chemical composition, morphology, total organic carbon (TOC) and mineralogy
    were determined using XRF, FESEM, TOC analyzers and XRD to select appropriate chemical reagents for complete digestion.
    HNO3
    , HF and HClO4
    were used for digestion of POC to measure heavy metal content using ICP-MS. The chemical reagents
    CH3
    COOH, NH2
    OH-HCl, H2
    O2
    +CH3
    COONH4
    and HF+HNO3
    +HCl were used for extraction of acid soluble, reducible,
    oxidizable and residual fractions of heavy metals in POC, respectively. The leaching toxicity of the POC was investigated
    by the USEPA 1311 TCLP method. The result showed the presence of Be, V, Cr, Ni, Cu, Zn, As, Se, Ag, Cd, Ba and Pb with
    levels of 5.13, 11.02, 2.65, 1.93, 45.43, 11.84, 15.07, 0, 0, 81.97 and 1.76 mg/kg, respectively, in POC. The leaching value
    in mg/L of As (4.56), Cu(1.05), Be (0.89), Zn(0.51), Ba(0.26), Ni (0.17), V(0.15), Cr(0.001) and Se (0.001) is found well
    below the standard limit of risk. Risk assessment code (RAC) analysis confirms the safe incorporation of POC in cementbased
    applications.
    Matched MeSH terms: Glass Ionomer Cements
  8. Nadiah Ramlan, Nazirah Wahidah Mohd Zamri, Mohamad Yusof Maskat, Mohd Suzeren Md Jamil, Saiful Irwan Zubairi, Chin OH, et al.
    Sains Malaysiana, 2018;47:1147-1155.
    A 50Hz glow discharge He/CH4
    plasma was generated and applied for the glass surface modification to reduce the powder
    adhesion on wall of spray dryer. The hydrophobicity of the samples determined by the water droplet contact angle and
    adhesion weight on glass, dependent on the CH4 flow rate and plasma exposure time. The presence of CH3
    groups and
    higher surface roughness of the plasma treated glass were the factors for its hydrophobicity development. Response
    surface methodology (RSM) results using central composite rotatable design (CCRD) showed that optimal responses
    were obtained by the combination of parameters, CH4
    gas flow rate = 3 sccm and exposure time = 10 min. In optimum
    conditions, the contact angle increased by 47% and the weight of the adhesion reduced by 38% (w/w). The plasma
    treatment could enhance the value of the contact angle and thus reduced the adhesion on the spray dryer glass surface.
    Matched MeSH terms: Glass
  9. Tang X, Yang Y, Xie Y
    Sains Malaysiana, 2016;45:1543-1550.
    The main objective of this work was to investigate the influence of waterborne epoxy resin emulsion (WER) on the physical properties of oil well cement slurries. Cement slurries containing 5%, 10% and 15% of WER bwoc were compared with WER-free slurries. The rheological behavior was carried out according to API standard. Uniaxial compressive strength and shear bond strength of cement stone were evaluated at the ages of 24, 48 and 72 h. The experimental results illustrate that the addition of WER does not alter the rheological behavior. The addition of WER has increased the shear bond strength almost 52% at 24 h of aging for 10% WER bwoc when compared with unmodified slurry. The enhancement on shear bond strength was attributed to the mechanical anchoring and resin film forming at the interface
    Matched MeSH terms: Glass Ionomer Cements
  10. Lih Shan Lim, Suk Fun Chin, Suh Cem Pang, Magdline Sia Henry Sum, David Perera
    Sains Malaysiana, 2017;46:2447-2454.
    A novel silver nanoparticles (Ag NPs)-based optical sensing probe has been developed for the detection of Japanese Encephalitis virus (JEV). Ag NPs were initially deposited onto amine functionalized glass slides. Subsequently, JEV antibodies were self-assembled onto surfaces of Ag NPs to form optical sensing probes. The detection of JEV antigen was observed via changes in light absorbance by Ag NPs upon occurrence of JEV antigen-antibody bindings. A highly sensitive and rapid optical sensing probe for JEV antigen with a detection limit of 12.8 ng/mL (for S/N ratio = 3) and an analysis assay time of 1 h had been demonstrated.
    Matched MeSH terms: Glass
  11. Nurul Hidayah Ismail, Mohd Hafizi Mohamad, Mariatti Jaafar
    Sains Malaysiana, 2018;47:563-569.
    This study was carried out to investigate the effect of adding 1 vol% of multi-walled carbon nanotubes (MWCNT) into
    woven kenaf/epoxy laminated composites on their flexural properties and to compare between two techniques used to
    incorporate MWCNT into the composite which are spraying and solution techniques. Furthermore, the effect of MWCNT
    addition in woven glass/woven kenaf/epoxy hybrid composites at the same filler concentration on the flexural properties
    were also investigated. All the laminated composites with and without MWCNT were fabricated using vacuum bagging
    method. The flexural properties of the composite samples with and without MWCNT were evaluated by applying threepoint
    bending test. The results were supported by morphological observation. It was found that the addition of MWCNT
    using both spraying and solution techniques reduced the flexural strength and flexural modulus of MWCNT/woven kenaf/
    epoxy composites, with obvious reduction trend was shown by former technique. The morphological observation of the
    composites fracture surface showed that delamination failure occurred in MWCNT/woven kenaf/epoxy laminated composite
    prepared by spraying technique. Further investigation on hybrid composites showed that MWCNT/woven glass/woven
    kenaf/epoxy laminated hybrid composites exhibited significant improvement in the flexural properties.
    Matched MeSH terms: Glass
  12. Khan AF, Sajjad W, Rahim NA
    Recent Pat Nanotechnol, 2016;10(1):77-82.
    PMID: 27018275
    BACKGROUND: It is well-known that multi-layer films with nanostructure can give novel properties by interfacial phenomenon and quantum confinement effects. Nanostructured multi-layer thin films are presently being analyzed for their vast applications in the area of optoelectronics technology particularly photovoltaics. Hereof, two dimensional thin films with nanostructure are of prime importance due to their structure dependent optical, electrical, and opto-electronic properties. It has been revealed that these films exhibit quantum confinement effects with band gap engineering. The main focus of the research is to evaluate the effect on structural and optical properties with number of layers.

    METHODS: Nanostructured SnO2-Ge multi-layer thin films were fabricated using electron beam evaporation and resistive heating techniques. Alternate layers of SnO2 and Ge were deposited on glass substrate at a substrate temperature of 300 °C in order to obtain uniform and homogeneous deposition. The substrate temperature of 300 °C has been determined to be effective for the deposition of these multi-layer films from our previous studies. The films were characterized by investigating their structural and optical properties. The structural properties of the as-deposited films were characterized by Rutherford Backscattering Spectroscopy (RBS) and Raman spectroscopy and optical properties by Ultra-Violet-Near infrared (UV-VIS-NIR) spectroscopy.

    RESULTS: RBS studies confirmed that the layer structure has been effectively formed. Raman spectroscopy results show that the peaks of both Ge and SnO2 shifts towards lower wavenumbers (in comparison with bulk Ge and SnO2, suggesting that the films consist of nanostructures and demonstrate quantum confinement effects. UV-VIS-NIR spectroscopy showed an increase in the band gap energy of Ge and SnO2 and shifting of transmittance curves toward higher wavelength by increasing the number of layers. The band gap lies in the range of 0.9 to 1.2 eV for Ge, while for SnO2, it lies between 1.7 to 2.1 eV.

    CONCLUSION: Analysis of results suggests that the nanostructured SnO2-Ge multi-layer thin film can work as heterojunction materials with quantum confinement effects. Accordingly, the present SnO2-Ge multi-layer films may be employed for photovoltaic applications. Few relevant patents to the topic have been reviewed and cited.

    Matched MeSH terms: Glass
  13. Alajerami YS, Hashim S, Ramli AT, Saleh MA, Kadni T
    Radiat Prot Dosimetry, 2013 Jun;155(1):1-10.
    PMID: 23193136 DOI: 10.1093/rpd/ncs310
    The thermoluminescent properties of boric glass modified with lithium and potassium carbonates (LKB) and co-doped with CuO and MgO are reported for the first time. Two techniques are applied to investigate the effect of dopants and co-dopants on the thermal stimulation properties of LKB. The induced TL glow curves of a CuO-doped sample are found to be at 220°C with a single peak. An enhancement of about three times is shown with the increment of 0.1 mol % MgO as a co-dopant impurity. This enhancement may contribute to the ability of magnesium to create extra electron traps and consequently the energy transfer to monovalent Cu(+) ions. LKB:Cu,Mg is low Z material (Zeff=8.55), and observed 15 times less sensitive than LiF: Mg, Ti (TLD-100). The proposed dosemeter showed good linearity in TL dose-response, low fading and excellent reproducibility with a simple glow curve, and thus, can be used in the radiation dosimetry.
    Matched MeSH terms: Glass/chemistry*
  14. Lui JL
    Quintessence Int, 1999 Sep;30(9):601-6.
    PMID: 10765865
    The introduction of an intraradicular composite reinforcing technique, in conjunction with the reestablishment of matching post canal spaces, has allowed compromised, root-filled teeth to be restored with functional, esthetic post crowns. This clinical case report suggests that reconstituted post canals, in accurately adapting to passive, parallel-sided, matching, and well-fitting posts, can enhance the retention of post crowns. Other factors of clinical importance relating to the resin-reinforced technique are discussed, including fracture resistance, depth of polymerization, dentin adhesion, polymerization shrinkage, and coronal microleakage.
    Matched MeSH terms: Glass Ionomer Cements
  15. Kong SY, Wong LS, Paul SC, Miah MJ
    Polymers (Basel), 2020 Oct 02;12(10).
    PMID: 33023168 DOI: 10.3390/polym12102270
    This paper investigated the static behaviour of glass fibre reinforced polymer (GFRP) built-up hollow and concrete filled built-up beams tested under four-point bending with a span-to-depth ratio of 1.67, therefore focusing their shear performance. Two parameters considered for hollow sections were longitudinal web stiffener and strengthening at the web-flange junction. The experimental results indicated that the GFRP hollow beams failed by web crushing at supports; therefore, the longitudinal web stiffener has an insignificant effect on improving the maximum load. Strengthening web-flange junctions using rectangular hollow sections increased the maximum load by 47%. Concrete infill could effectively prevent the web crushing, and it demonstrated the highest load increment of 162%. The concrete filled GFRP composite beam failed by diagonal tension in the lightweight concrete core. The finite element models adopting Hashin damage criteria yielded are in good agreement with the experimental results in terms of maximum load and failure mode. Based on the numerical study, the longitudinal web stiffener could prevent the web buckling of the slender GFRP beam and improved the maximum load by 136%. The maximum load may be further improved by increasing the thickness of the GFRP section and the size of rectangular hollow sections used for strengthening. It was found that the bond-slip at the concrete-GFRP interface affected the shear resistance of concrete-GFRP composite beam.
    Matched MeSH terms: Glass
  16. Siew Ching H, Thirumulu Ponnuraj K, Luddin N, Ab Rahman I, Nik Abdul Ghani NR
    Polymers (Basel), 2020 Sep 17;12(9).
    PMID: 32957636 DOI: 10.3390/polym12092125
    This study aimed to investigate the effects of nanohydroxyapatite-silica-glass ionomer cement (nanoHA-silica-GIC) on the differentiation of dental pulp stem cells (DPSCs) into odontogenic lineage. DPSCs were cultured in complete Minimum Essential Medium Eagle-Alpha Modification (α-MEM) with or without nanoHA-silica-GIC extract and conventional glass ionomer cement (cGIC) extract. Odontogenic differentiation of DPSCs was evaluated by real-time reverse transcription polymerase chain reaction (rRT-PCR) for odontogenic markers: dentin sialophosphoprotein (DSPP), dentin matrix protein 1 (DMP1), osteocalcin (OCN), osteopontin (OPN), alkaline phosphatase (ALP), collagen type I (COL1A1), and runt-related transcription factor 2 (RUNX2) on day 1, 7, 10, 14, and 21, which were normalized to the house keeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Untreated DPSCs were used as a control throughout the study. The expressions of DSPP and DMP1 were higher on days 7 and 10, that of OCN on day 10, those of OPN and ALP on day 14, and that of RUNX2 on day 1; COL1A1 exhibited a time-dependent increase from day 7 to day 14. Despite the above time-dependent variations, the expressions were comparable at a concentration of 6.25 mg/mL between the nanoHA-silica-GIC and cGIC groups. This offers empirical support that nanoHA-silica-GIC plays a role in the odontogenic differentiation of DPSCs.
    Matched MeSH terms: Glass Ionomer Cements
  17. Sapuan SM, Aulia HS, Ilyas RA, Atiqah A, Dele-Afolabi TT, Nurazzi MN, et al.
    Polymers (Basel), 2020 Sep 27;12(10).
    PMID: 32992450 DOI: 10.3390/polym12102211
    This work represents a study to investigate the mechanical properties of longitudinal basalt/woven-glass-fiber-reinforced unsaturated polyester-resin hybrid composites. The hybridization of basalt and glass fiber enhanced the mechanical properties of hybrid composites. The unsaturated polyester resin (UP), basalt (B) and glass fibers (GF) were fabricated using the hand lay-up method in six formulations (UP, GF, B7.5/G22.5, B15/G15, B22.5/G7.5 and B) to produce the composites, respectively. This study showed that the addition of basalt to glass-fiber-reinforced unsaturated polyester resin increased its density, tensile and flexural properties. The tensile strength of the B22.5/G7.5 hybrid composites increased by 213.92 MPa compared to neat UP, which was 8.14 MPa. Scanning electron microscopy analysis was used to observe the fracture mode and fiber pullout of the hybrid composites.
    Matched MeSH terms: Glass
  18. Asyraf MRM, Ishak MR, Sapuan SM, Yidris N
    Polymers (Basel), 2021 Feb 19;13(4).
    PMID: 33669491 DOI: 10.3390/polym13040620
    The application of pultruded glass fiber-reinforced polymer composites (PGFRPCs) as a replacement for conventional wooden cross-arms in transmission towers is relatively new. Although numerous studies have conducted creep tests on coupon-scale PGFRPC cross-arms, none had performed creep analyses on full-scale PGFRPC cross-arms under actual working load conditions. Thus, this work proposed to study the influence of an additional bracing system on the creep responses of PGFRPC cross-arms in a 132 kV transmission tower. The creep behaviors and responses of the main members in current and braced PGFRPC cross-arm designs were compared and evaluated in a transmission tower under actual working conditions. These PGFRPC cross-arms were subjected to actual working loads mimicking the actual weight of electrical cables and insulators for a duration of 1000 h. The cross-arms were installed on a custom test rig in an open area to simulate the actual environment of tropical climate conditions. Further creep analysis was performed by using Findley and Burger models on the basis of experimental data to link instantaneous and extended (transient and viscoelastic) creep strains. The addition of braced arms to the structure reduced the total strain of a cross-arm's main member beams and improved elastic and viscous moduli. The addition of bracing arms improved the structural integrity and stiffness of the cross-arm structure. The findings of this study suggested that the use of a bracing system in cross-arm structures could prolong the structures' service life and subsequently reduce maintenance effort and cost for long-term applications in transmission towers.
    Matched MeSH terms: Glass
  19. Chow ZP, Ahmad Z, Wong KJ, Koloor SSR, Petrů M
    Polymers (Basel), 2021 Feb 04;13(4).
    PMID: 33557350 DOI: 10.3390/polym13040492
    This paper aims to propose a temperature-dependent cohesive model to predict the delamination of dissimilar metal-composite material hybrid under Mode-I and Mode-II delamination. Commercial nonlinear finite element (FE) code LS-DYNA was used to simulate the material and cohesive model of hybrid aluminium-glass fibre-reinforced polymer (GFRP) laminate. For an accurate representation of the Mode-I and Mode-II delamination between aluminium and GFRP laminates, cohesive zone modelling with bilinear traction separation law was implemented. Cohesive zone properties at different temperatures were obtained by applying trends of experimental results from double cantilever beam and end notched flexural tests. Results from experimental tests were compared with simulation results at 30, 70 and 110 °C to verify the validity of the model. Mode-I and Mode-II FE models compared to experimental tests show a good correlation of 5.73% and 7.26% discrepancy, respectively. Crack front stress distribution at 30 °C is characterised by a smooth gradual decrease in Mode-I stress from the centre to the edge of the specimen. At 70 °C, the entire crack front reaches the maximum Mode-I stress with the exception of much lower stress build-up at the specimen's edge. On the other hand, the Mode-II stress increases progressively from the centre to the edge at 30 °C. At 70 °C, uniform low stress is built up along the crack front with the exception of significantly higher stress concentrated only at the free edge. At 110 °C, the stress distribution for both modes transforms back to the similar profile, as observed in the 30 °C case.
    Matched MeSH terms: Glass
  20. Bassiri Nia A, Xin L, Yahya MY, Ayob A, Farokhi Nejad A, Rahimian Koloor SS, et al.
    Polymers (Basel), 2020 Sep 19;12(9).
    PMID: 32961655 DOI: 10.3390/polym12092139
    The present study investigates the effects of close-range blast loading of fibre metal laminates (FMLs) fabricated from woven glass polypropylene and aluminium alloy 2024-T3. The polypropylene layers and anodized aluminium are stacked in 3/2 layering configuration to investigate the impact energy absorbed through deformation and damage. In order to study the blast responses of FMLs, a 4-cable instrumented pendulum blast set-up is used. Effects of blast impulse and stand-off distance were examined. Investigation of the cross-section of FMLs are presented and damages such as fibre fracture, debonding, and global deformation are examined. Increasing stand-off distance from 4 to 14 mm resulted in a change of damage mode from highly localized perforation to global deformation.
    Matched MeSH terms: Glass
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links