Displaying publications 41 - 53 of 53 in total

Abstract:
Sort:
  1. Gopalakrishnan S, Sinding MS, Ramos-Madrigal J, Niemann J, Samaniego Castruita JA, Vieira FG, et al.
    Curr Biol, 2018 11 05;28(21):3441-3449.e5.
    PMID: 30344120 DOI: 10.1016/j.cub.2018.08.041
    The evolutionary history of the wolf-like canids of the genus Canis has been heavily debated, especially regarding the number of distinct species and their relationships at the population and species level [1-6]. We assembled a dataset of 48 resequenced genomes spanning all members of the genus Canis except the black-backed and side-striped jackals, encompassing the global diversity of seven extant canid lineages. This includes eight new genomes, including the first resequenced Ethiopian wolf (Canis simensis), one dhole (Cuon alpinus), two East African hunting dogs (Lycaon pictus), two Eurasian golden jackals (Canis aureus), and two Middle Eastern gray wolves (Canis lupus). The relationships between the Ethiopian wolf, African golden wolf, and golden jackal were resolved. We highlight the role of interspecific hybridization in the evolution of this charismatic group. Specifically, we find gene flow between the ancestors of the dhole and African hunting dog and admixture between the gray wolf, coyote (Canis latrans), golden jackal, and African golden wolf. Additionally, we report gene flow from gray and Ethiopian wolves to the African golden wolf, suggesting that the African golden wolf originated through hybridization between these species. Finally, we hypothesize that coyotes and gray wolves carry genetic material derived from a "ghost" basal canid lineage.
    Matched MeSH terms: Hybridization, Genetic
  2. Flot JF, Blanchot J, Charpy L, Cruaud C, Licuanan WY, Nakano Y, et al.
    BMC Ecol, 2011 Oct 04;11:22.
    PMID: 21970706 DOI: 10.1186/1472-6785-11-22
    BACKGROUND: Morphological data suggest that, unlike most other groups of marine organisms, scleractinian corals of the genus Stylophora are more diverse in the western Indian Ocean and in the Red Sea than in the central Indo-Pacific. However, the morphology of corals is often a poor predictor of their actual biodiversity: hence, we conducted a genetic survey of Stylophora corals collected in Madagascar, Okinawa, the Philippines and New Caledonia in an attempt to find out the true number of species in these various locations.

    RESULTS: A molecular phylogenetic analysis of the mitochondrial ORF and putative control region concurs with a haploweb analysis of nuclear ITS2 sequences in delimiting three species among our dataset: species A and B are found in Madagascar whereas species C occurs in Okinawa, the Philippines and New Caledonia. Comparison of ITS1 sequences from these three species with data available online suggests that species C is also found on the Great Barrier Reef, in Malaysia, in the South China Sea and in Taiwan, and that a distinct species D occurs in the Red Sea. Shallow-water morphs of species A correspond to the morphological description of Stylophora madagascarensis, species B presents the morphology of Stylophora mordax, whereas species C comprises various morphotypes including Stylophora pistillata and Stylophora mordax.

    CONCLUSIONS: Genetic analysis of the coral genus Stylophora reveals species boundaries that are not congruent with morphological traits. Of the four hypotheses that may explain such discrepancy (phenotypic plasticity, morphological stasis, morphological convergence, and interspecific hybridization), the first two appear likely to play a role but the fourth one is rejected since mitochondrial and nuclear markers yield congruent species delimitations. The position of the root in our molecular phylogenies suggests that the center of origin of Stylophora is located in the western Indian Ocean, which probably explains why this genus presents a higher biodiversity in the westernmost part of its area of distribution than in the "Coral Triangle".

    Matched MeSH terms: Hybridization, Genetic*
  3. Fazhan H, Waiho K, Quinitio E, Baylon JC, Fujaya Y, Rukminasari N, et al.
    PeerJ, 2020;8:e8066.
    PMID: 31915566 DOI: 10.7717/peerj.8066
    There are four species of mud crabs within the genus Scylla, and most of them live sympatrically in the equatorial region. Apart from a report in Japan about the finding of a natural Scylla hybrid more than a decade ago after the division of genus Scylla into four species by Keenan, Davie & Mann (1998), no subsequent sighting was found. Thus, this study investigates the possible natural occurrence of potential hybridization among Scylla species in the wild. A total of 76,211 individuals from mud crab landing sites around the Malacca Straits, South China Sea and Sulu Sea were screened. In addition to the four-purebred species, four groups (SH 1, n = 2, 627; SH 2, n = 136; SH 3, n = 1; SH 4, n = 2) with intermediate characteristics were found, mostly at Sulu Sea. Discriminant Function Analysis revealed that all Scylla species, including SH 1 - 4, are distinguishable via their morphometric ratios. The most powerful discriminant ratios for each character and the top five discriminant ratios of males and females were suggested. The carapace width of SH 1 males and females were significantly smaller than pure species. Based on the discriminant ratios and the description of morphological characters, we hypothesize that the additional four groups of Scylla with intermediate characteristics could be presumed hybrids. Future work at the molecular level is urgently needed to validate this postulate.
    Matched MeSH terms: Hybridization, Genetic
  4. Cross JH, Bhaibulaya M
    PMID: 4432097
    Matched MeSH terms: Hybridization, Genetic
  5. Chang YHR
    Chem Commun (Camb), 2020 Sep 17;56(74):10962-10965.
    PMID: 32789397 DOI: 10.1039/d0cc04123h
    While lab-scale synthesis of trigonal-Zr2N2S, hexagonal-Zr2N2S and hexagonal-Zr2N2Se has been reported, meaningful data on the photophysical properties of IV-nitride chalcogenides in general are scarcely available. The first-principles calculations and genetic algorithm modeling in our work reveal the existence of remarkably stable, indirect gap trigonal-Zr2N2Se and trigonal-Hf2N2Se phases, which progress to direct gap, monoclinic materials in monolayer form. These structures display the desired optoelectronic properties, such as exceptionally high visible-UV absorption spectra (105-106 cm-1) and exciton binding energy below 0.02 eV. Strong hybridization between the Zr-d, N-p and Se-p orbitals is accounted for by the polysilicon comparable Vickers hardness (10.64-12.77 GPa), while retaining ductile nature.
    Matched MeSH terms: Hybridization, Genetic
  6. Chai HH, Ho WK, Graham N, May S, Massawe F, Mayes S
    Genes (Basel), 2017 Feb 22;8(2).
    PMID: 28241413 DOI: 10.3390/genes8020084
    Bambara groundnut (Vigna subterranea (L.) Verdc.) is an underutilised legume crop, which has long been recognised as a protein-rich and drought-tolerant crop, used extensively in Sub-Saharan Africa. The aim of the study was to identify quantitative trait loci (QTL) involved in agronomic and drought-related traits using an expression marker-based genetic map based on major crop resources developed in soybean. The gene expression markers (GEMs) were generated at the (unmasked) probe-pair level after cross-hybridisation of bambara groundnut leaf RNA to the Affymetrix Soybean Genome GeneChip. A total of 753 markers grouped at an LOD (Logarithm of odds) of three, with 527 markers mapped into linkage groups. From this initial map, a spaced expression marker-based genetic map consisting of 13 linkage groups containing 218 GEMs, spanning 982.7 cM (centimorgan) of the bambara groundnut genome, was developed. Of the QTL detected, 46% were detected in both control and drought treatment populations, suggesting that they are the result of intrinsic trait differences between the parental lines used to construct the cross, with 31% detected in only one of the conditions. The present GEM map in bambara groundnut provides one technically feasible route for the translation of information and resources from major and model plant species to underutilised and resource-poor crops.
    Matched MeSH terms: Hybridization, Genetic
  7. Bänfer G, Moog U, Fiala B, Mohamed M, Weising K, Blattner FR
    Mol Ecol, 2006 Dec;15(14):4409-24.
    PMID: 17107473
    Macaranga (Euphorbiaceae) includes about 280 species with a palaeotropic distribution. The genus not only comprises some of the most prominent pioneer tree species in Southeast Asian lowland dipterocarp forests, it also exhibits a substantial radiation of ant-plants (myrmecophytes). Obligate ant-plant mutualisms are formed by about 30 Macaranga species and 13 ant species of the genera Crematogaster or Camponotus. To improve our understanding of the co-evolution of the ants and their host plants, we aim at reconstructing comparative organellar phylogeographies of both partners across their distributional range. Preliminary evidence indicated that chloroplast DNA introgression among closely related Macaranga species might occur. We therefore constructed a comprehensive chloroplast genealogy based on DNA sequence data from the noncoding ccmp2, ccmp6, and atpB-rbcL regions for 144 individuals from 41 Macaranga species, covering all major evolutionary lineages within the three sections that contain myrmecophytes. A total of 88 chloroplast haplotypes were identified, and grouped into a statistical parsimony network that clearly distinguished sections and well-defined subsectional groups. Within these groups, the arrangement of haplotypes followed geographical rather than taxonomical criteria. Thus, up to six chloroplast haplotypes were found within single species, and up to seven species shared a single haplotype. The spatial distribution of the chloroplast types revealed several dispersals between the Malay Peninsula and Borneo, and a deep split between Sabah and the remainder of Borneo. Our large-scale chloroplast genealogy highlights the complex history of migration, hybridization, and speciation in the myrmecophytes of the genus Macaranga. It will serve as a guideline for adequate sampling and data interpretation in phylogeographic studies of individual Macaranga species and species groups.
    Matched MeSH terms: Hybridization, Genetic*
  8. Bunlungsup S, Kanthaswamy S, Oldt RF, Smith DG, Houghton P, Hamada Y, et al.
    Am J Primatol, 2017 12;79(12).
    PMID: 29095514 DOI: 10.1002/ajp.22726
    In the past decade, many researchers have published papers about hybridization between long-tailed and rhesus macaques. These previous works have proposed unidirectional gene flow with the Isthmus of Kra as the zoogeographical barrier of hybridization. However, these reports analyzed specimens of unknown origin and/or did not include specimens from Thailand, the center of the proposed area of hybridization. Collected specimens of long-tailed and rhesus macaques representing all suspected hybridization areas were examined. Blood samples from four populations each of long-tailed and rhesus macaques inhabiting Thailand, Myanmar, and Laos were collected and analyzed with conspecific references from China (for rhesus macaques) and multiple countries from Sundaic regions (for long-tailed macaques). Ninety-six single nucleotide polymorphism (SNP) markers specifically designed to interrogate admixture and ancestry were used in genotyping. We found genetic admixture maximized at the hybrid zone (15-20°N), as well as admixture signals of varying strength in both directions outside of the hybrid zone. These findings show that the Isthmus of Kra is not a barrier to gene flow from rhesus to long-tailed populations. However, to precisely identify a southernmost barrier, if in fact a boundary rather than simple isolation by distance exists, the samples from peninsular Malaysia must be included in the analysis. Additionally, a long-tailed to rhesus gene flow boundary was found between northern Thailand and Myanmar. Our results suggest that selection of long-tailed and rhesus macaques, the two most commonly used non-human primates for biomedical research, should take into account not only the species identification but also the origin of and genetic admixture within and between the species.
    Matched MeSH terms: Hybridization, Genetic*
  9. Bongso TA, Hilmi M, Sopian M, Zulkifli S
    Res Vet Sci, 1988 Mar;44(2):251-4.
    PMID: 3387680
    The chromosomes of five gaur (Bos gaurus hubbacki) domestic cattle (B indicus cross B taurus) hybrids (three females, two males) were studied using the leucocyte culture method and centromeric (C) banding technique. All the hybrids had a diploid chromosome number of 2n = 58, made up of two submetacentric autosomes (different in size) and 54 acrocentric autosomes, most of which could be arranged in pairs in descending order of size. The sex (X) chromosomes in females were a pair of submetacentric chromosomes smaller than the submetacentric autosomes. The Y chromosome in males was a small submetacentric chromosome. The C banding patterns were useful in identifying the X and Y chromosomes and the inherited submetacentric autosomes from the gaur sire. Phenotypically, the hybrids resembled normal B indicus cross B taurus calves except for the presence of a distinct hump-like dorsal ridge containing the spinous processes of the third to 11th thoracic vertebrae, upright 'deer-like' ears and long lean legs. The potential of these hybrids as important genetic resources for meat production is stressed.
    Matched MeSH terms: Hybridization, Genetic*
  10. Bernstein IS
    Science, 1966 Dec 23;154(3756):1559-60.
    PMID: 4958933
    Two members of a troop of wild Macaca irus in Malaysia have been tentatively identified as hybrids of M. irus and M. nemestrina. Mechanisms prohibiting such hybridization in the natural habitat may have broken down under heavy predation pressure which finally resulted in the local extermination of M. nemestrinia.
    Matched MeSH terms: Hybridization, Genetic*
  11. Barnett R, Westbury MV, Sandoval-Velasco M, Vieira FG, Jeon S, Zazula G, et al.
    Curr Biol, 2020 Dec 21;30(24):5018-5025.e5.
    PMID: 33065008 DOI: 10.1016/j.cub.2020.09.051
    Homotherium was a genus of large-bodied scimitar-toothed cats, morphologically distinct from any extant felid species, that went extinct at the end of the Pleistocene [1-4]. They possessed large, saber-form serrated canine teeth, powerful forelimbs, a sloping back, and an enlarged optic bulb, all of which were key characteristics for predation on Pleistocene megafauna [5]. Previous mitochondrial DNA phylogenies suggested that it was a highly divergent sister lineage to all extant cat species [6-8]. However, mitochondrial phylogenies can be misled by hybridization [9], incomplete lineage sorting (ILS), or sex-biased dispersal patterns [10], which might be especially relevant for Homotherium since widespread mito-nuclear discrepancies have been uncovered in modern cats [10]. To examine the evolutionary history of Homotherium, we generated a ∼7x nuclear genome and a ∼38x exome from H. latidens using shotgun and target-capture sequencing approaches. Phylogenetic analyses reveal Homotherium as highly divergent (∼22.5 Ma) from living cat species, with no detectable signs of gene flow. Comparative genomic analyses found signatures of positive selection in several genes, including those involved in vision, cognitive function, and energy consumption, putatively consistent with diurnal activity, well-developed social behavior, and cursorial hunting [5]. Finally, we uncover relatively high levels of genetic diversity, suggesting that Homotherium may have been more abundant than the limited fossil record suggests [3, 4, 11-14]. Our findings complement and extend previous inferences from both the fossil record and initial molecular studies, enhancing our understanding of the evolution and ecology of this remarkable lineage.
    Matched MeSH terms: Hybridization, Genetic
  12. Baimai V, Harbach RE, Sukowati S
    J Am Mosq Control Assoc, 1988 Mar;4(1):44-50.
    PMID: 3193098
    Karyotypes and crossing relationships were investigated for three allopatric populations of Anopheles leucosphyrus in Southeast Asia: South Kalimantan, Sumatra and Thailand. The mitotic karyotypes of these populations were similar to those previously observed in other species of the An. leucosphyrus group. Populations from Thailand and South Kalimantan exhibited telocentric and subtelocentric sex chromosomes, respectively, with a distinctive band of intercalary heterochromatin in the X chromosome. Strikingly different submetacentric X and Y chromosomes were observed in the population from Sumatra, and it seems likely that the evolution of these chromosomes occurred through the acquisition of constitutive heterochromatin. Sterile F1 males were observed in crosses between the Sumatra population and the populations from South Kalimantan and Thailand. No genetic incompatibility was observed in crosses between the latter two populations. We believe that the present concept of An. leucosphyrus includes two allopatric species, one inhabiting Borneo, West Malaysia and southern Thailand and one confined to Sumatra.
    Matched MeSH terms: Hybridization, Genetic
  13. Aji, I.S., Zinudin, E.S., Khairul, M.Z., Abdan, K., S. M. Sapuan
    MyJurnal
    Electron beam irradiation, without any addition of cross-linking agents, was investigated at varying
    doses of EB-Irradiation to develop an environmentally friendly hybridized kenaf (bast)/ pineapple leaf
    fibre (PALF) bio-composites. Improvement in tensile property of the hybrid was achieved with the result
    showing a direct proportionality relationship between tensile properties and increasing radiation dose.
    Statistical analysis software (SAS) was employed to validate the result. HDPE has been shown to have
    self-cross-linked, enabling interesting tensile properties with irradiation. Statistical analysis validated
    the results obtained and also showed that adequate mixing of fibres and matrix had taken place at 95%
    confidence level. Hybridization and subsequent irradiation increased the tensile strength and modulus
    of HDPE up to 31 and 185%, respectively, at about 100kGy. Meanwhile, SEM was used to view the
    interaction between the fibres and matrix.
    Matched MeSH terms: Hybridization, Genetic
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links