Displaying publications 41 - 60 of 396 in total

Abstract:
Sort:
  1. Habiba U, Islam MS, Siddique TA, Afifi AM, Ang BC
    Carbohydr Polym, 2016 09 20;149:317-31.
    PMID: 27261756 DOI: 10.1016/j.carbpol.2016.04.127
    Chitosan/PVA/Na-titanate/TiO2 composite was synthesized by solution casting method. The composite was analyzed via Fourier Transform Infrared Spectroscopy, X-ray diffraction, Field Emission Scanning Electron Microscopy, Thermal gravimetric analysis and water stability test. Incorporation of Na-titanate shown decrease of crystallinity for chitosan but increase water stability. However, the composite structure was deteriorated with considerable weight loss in acidic medium. Two anionic dyes, methyl orange and congo red were used for the adsorption test. The adsorption behavior of the composites were described by pseudo-second-order kinetic model and Lagergren-first-order model for methyl orange and congo red, respectively. For methyl orange, adsorption was started with a promising decolorization rate. 99.9% of methyl orange dye was removed by the composite having higher weightage of chitosan and crystalline TiO2 phase. On the other hand, for the congo red the composite having higher chitosan and Na-titanate showed an efficient removal capacity of 95.76%. UV-vis results showed that the molecular backbone of methyl orange and congo red was almost destroyed when equilibrium was obtained, and the decolorization rate was reaching 100%. Kinetic study results showed that the photocatalytic degradation of methyl orange and congo red could be explained by Langmuir-Hinshelwood model. Thus, chitosan/PVA/Na-titanate/TiO2 possesses efficient adsorptivity and photocatalytic property for dye degradation.
    Matched MeSH terms: Oxides/chemistry*
  2. Ardyani T, Mohamed A, Abu Bakar S, Sagisaka M, Umetsu Y, Hafiz Mamat M, et al.
    Carbohydr Polym, 2020 Jan 15;228:115376.
    PMID: 31635739 DOI: 10.1016/j.carbpol.2019.115376
    The effect of incorporating common dodecyl anionic and cationic surfactants such as dodecyltrimethylammonium bromide (DTAB), dodecylethyldimethylammonium bromide (DDAB), and sodium dodecylsulfate (SDS) in nanocomposites of reduced graphene oxide and nanocellulose are described. The stabilization and electrical properties of the nanocomoposites of reduced graphene oxide (RGO) and nanofibrillated kenaf cellulose (NFC) were characterized using four-point probe electrical conductivity measurements. Raman spectroscopy, field emission scanning electron microscopy, and high-resolution transmission electron microscopy were used to investigate dispersion morphology and the quality of RGO inside the NFC matrices. Small-angle neutron scattering (SANS) was used to study the aggregation behavior of the aqueous surfactant systems and RGO dispersions. The cationic surfactant DTAB proved to be the best choice for stabilization of RGO in NFC, giving enhanced electrical conductivity five orders of magnitude higher than the neat NFC. The results highlight the effects of hydrophilic surfactant moieties on the structure, stability and properties of RGO/NFC composites.
    Matched MeSH terms: Oxides
  3. Kao CY, Lin TL, Lin YH, Lee AK, Ng SY, Huang TH, et al.
    Cells, 2022 Dec 08;11(24).
    PMID: 36552731 DOI: 10.3390/cells11243967
    In scaffold-regulated bone regeneration, most three-dimensional (3D)-printed scaffolds do not provide physical stimulation to stem cells. In this study, a magnetic scaffold was fabricated using fused deposition modeling with calcium silicate (CS), iron oxide nanoparticles (Fe3O4), and poly-ε-caprolactone (PCL) as the matrix for internal magnetic sources. A static magnetic field was used as an external magnetic source. It was observed that 5% Fe3O4 provided a favorable combination of compressive strength (9.6 ± 0.9 MPa) and degradation rate (21.6 ± 1.9% for four weeks). Furthermore, the Fe3O4-containing scaffold increased in vitro bioactivity and Wharton's jelly mesenchymal stem cells' (WJMSCs) adhesion. Moreover, it was shown that the Fe3O4-containing scaffold enhanced WJMSCs' proliferation, alkaline phosphatase activity, and the osteogenic-related proteins of the scaffold. Under the synergistic effect of the static magnetic field, the CS scaffold containing Fe3O4 can not only enhance cell activity but also stimulate the simultaneous secretion of collagen I and osteocalcin. Overall, our results demonstrated that Fe3O4-containing CS/PCL scaffolds could be fabricated three dimensionally and combined with a static magnetic field to affect cell behaviors, potentially increasing the likelihood of clinical applications for bone tissue engineering.
    Matched MeSH terms: Oxides/pharmacology
  4. Zhu T, Chong MN, Chan ES
    ChemSusChem, 2014 Nov;7(11):2974-97.
    PMID: 25274424 DOI: 10.1002/cssc.201402089
    The recent developments of nanostructured WO3 thin films synthesized through the electrochemical route of electrochemical anodization and cathodic electrodeposition for the application in photoelectrochemical (PEC) water splitting are reviewed. The key fundamental reaction mechanisms of electrochemical anodization and cathodic electrodeposition methods for synthesizing nanostructured WO3 thin films are explained. In addition, the effects of metal oxide precursors, electrode substrates, applied potentials and current densities, and annealing temperatures on size, composition, and thickness of the electrochemically synthesized nanostructured WO3 thin films are elucidated in detail. Finally, a summary is given for the general evaluation practices used to calculate the energy conversion efficiency of nanostructured WO3 thin films and a recommendation is provided to standardize the presentation of research results in the field to allow for easy comparison of reported PEC efficiencies in the near future.
    Matched MeSH terms: Oxides/chemistry*
  5. Ong WJ, Tan LL, Chai SP, Yong ST
    Chem Commun (Camb), 2015 Jan 18;51(5):858-61.
    PMID: 25429376 DOI: 10.1039/c4cc08996k
    A facile one-pot impregnation-thermal reduction strategy was employed to fabricate sandwich-like graphene-g-C3N4 (GCN) nanocomposites using urea and graphene oxide as precursors. The GCN sample exhibited a slight red shift of the absorption band edge attributed to the formation of a C-O-C bond as a covalent cross linker between graphene and g-C3N4. The GCN sample demonstrated high visible-light photoactivity towards CO2 reduction under ambient conditions, exhibiting a 2.3-fold enhancement over pure g-C3N4. This was ascribed to the inhibition of electron-hole pair recombination by graphene, which increased the charge transfer.
    Matched MeSH terms: Oxides
  6. Chew YH, Tang JY, Tan LJ, Choi BWJ, Tan LL, Chai SP
    Chem Commun (Camb), 2019 May 28;55(44):6265-6268.
    PMID: 31086906 DOI: 10.1039/c9cc01449g
    The engineering of surface oxygen vacancies (OVs) in WO3 was primitively done using a facile solvothermal method. The photocatalytic activities of the as-prepared samples were studied by evaluating their performances in the photocatalytic OER. The best sample (W-3) yielded 57.6 μmol of O2 in 6 h under the illumination of simulated sunlight.
    Matched MeSH terms: Oxides
  7. Lee KT, Bhatia S, Mohamed AR, Chu KH
    Chemosphere, 2006 Jan;62(1):89-96.
    PMID: 15996711
    High performance sorbents for flue gas desulfurization can be synthesized by hydration of coal fly ash, calcium sulfate, and calcium oxide. In general, higher desulfurization activity correlates with higher sorbent surface area. Consequently, a major aim in sorbent synthesis is to maximize the sorbent surface area by optimizing the hydration conditions. This work presents an integrated modeling and optimization approach to sorbent synthesis based on statistical experimental design and two artificial intelligence techniques: neural network and genetic algorithm. In the first step of the approach, the main and interactive effects of three hydration variables on sorbent surface area were evaluated using a full factorial design. The hydration variables of interest to this study were hydration time, amount of coal fly ash, and amount of calcium sulfate and the levels investigated were 4-32 h, 5-15 g, and 0-12 g, respectively. In the second step, a neural network was used to model the relationship between the three hydration variables and the sorbent surface area. A genetic algorithm was used in the last step to optimize the input space of the resulting neural network model. According to this integrated modeling and optimization approach, an optimum sorbent surface area of 62.2m(2)g(-1) could be obtained by mixing 13.1g of coal fly ash and 5.5 g of calcium sulfate in a hydration process containing 100ml of water and 5 g of calcium oxide for a fixed hydration time of 10 h.
    Matched MeSH terms: Oxides/chemistry*
  8. Ullah S, Al-Sehemi AG, Mubashir M, Mukhtar A, Saqib S, Bustam MA, et al.
    Chemosphere, 2021 May;271:129504.
    PMID: 33445018 DOI: 10.1016/j.chemosphere.2020.129504
    This study reports the application of hydrated lime for the effective adsorption of the heavy mercury metal from the aqueous phase solutions. Initially, hydrated lime was subjected to structural characterization and thermal stability analysis. The FT-IR spectrum analysis revealed that the existence of the O-H bonds as a confirmation of hydrated lime formation. Subsequently, the XRD powder-based analysis demonstrated that most of the hydrated lime is pure crystalline material known as Portlandite while a small amount of calcite is also present in the structure of the hydrated lime. The thermal stability analysis revealed that the hydrated lime is highly thermally stable under harsh conditions without decomposing at higher temperatures up to 500 °C. Furthermore, the hydrated lime was subjected to the selective adsorption of heavy metal mercury to investigate the potential influence of the adsorbent particle size and loading on adsorption capacity. The results demonstrated that the decrease in the adsorbent particle size leads to the improvement in the mercury adsorption attributing to the rise in specific surface area. The enhancement in the loading of the adsorbent resulted in a reduction in mercury adsorption directing to the fact that already adsorbed metal ions onto the adsorbent surface lead to hindrance for the adsorption of other ions of heavy metal. These results lead to a significant impact on modern in inventing different adsorbents with promising water treatment efficiency for more industrial applications and the related recovery of mercury.
    Matched MeSH terms: Oxides
  9. Pachaiappan R, Rajendran S, Show PL, Manavalan K, Naushad M
    Chemosphere, 2021 Jun;272:128607.
    PMID: 33097236 DOI: 10.1016/j.chemosphere.2020.128607
    Many microbial species causing infectious disease all over the world became a social burden and creating threat among community. These microbes possess long lifetime, enhancing mortality and morbidity rate in affected organisms. In this condition, the treatment was ineffective and more chances of spreading of infection into other organisms. Hence, it is necessary to initiate infection control efforts and prevention activities against multidrug resistant microbes, to reduce the death rate of people. Seriously concerning towards this problem progress was shown in developing significant drugs with least side effects. Emergence of nanoparticles and its novelty showed effective role in targeting and destructing microbes well. Further, many research works have shown nanocomposites developed from nanoparticles coupled with other nanoparticles, polymers, carbon material acted as an exotic substance against microbes causing severe loss. However, metal and metal oxide nanocomposites have gained interest due to its small size and enhancing the surface contact with bacteria, producing damage to it. The bactericidal mechanism of metal and metal oxide nanocomposites involve in the production of reactive oxygen species which includes superoxide radical anions, hydrogen peroxide anions and hydrogen peroxide which interact with the cell wall of bacteria causing damage to the cell membrane in turn inhibiting the further growth of cell with leakage of internal cellular components, leading to death of bacteria. This review provides the detailed view on antibacterial activity of metal and metal oxide nanocomposite which possessed novelty due to its physiochemical changes.
    Matched MeSH terms: Oxides/pharmacology
  10. Ong YP, Ho LN, Ong SA, Banjuraizah J, Ibrahim AH, Thor SH, et al.
    Chemosphere, 2021 Jan;263:128212.
    PMID: 33297171 DOI: 10.1016/j.chemosphere.2020.128212
    A unidirectional flow solar photocatalytic fuel cell (PFC) was successfully developed for the first time to offer alternative for electricity generation and simultaneous wastewater treatment. This study was focused on the synthesis of α-, δ- and β-MnO2 by wet chemical hydrothermal method for application as the cathodic catalyst in PFC. The crystallographic evolution was performed by varying the ratios of KMnO4 to MnSO4. The mechanism of the PFC with the MnO2/C as cathode was also discussed. Results showed that the catalytic activity of MnO2/C cathode was mainly predominated by their crystallographic structures which included Mn-O bond strength and tunnel size, following order of α- > δ- > β-MnO2/C. Interestingly, it was discovered that the specific surface areas (SBET) of different crystal phases did not give an impact on the PFC performance. However, the Pmax could be significantly influenced by the micropore surface area (Smicro) in the comparison among α-MnO2. Furthermore, the morphological transformation carried out by altering the hydrothermal duration demonstrated that the nanowire α-M3(24 h)/C with 1:1 ratio of KMnO4 and MnSO4 yielded excellent PFC performance with a Pmax of 2.8680 μW cm-2 and the lowest Rint of 700 Ω.
    Matched MeSH terms: Oxides*
  11. Tuan DD, Hung C, Da Oh W, Ghanbari F, Lin JY, Lin KA
    Chemosphere, 2020 Dec;261:127552.
    PMID: 32731015 DOI: 10.1016/j.chemosphere.2020.127552
    As cobalt (Co) represents an effective transition metal for activating Oxone to degrade contaminants, tricobalt tetraoxide (Co3O4) is extensively employed as a heterogeneous phase of Co for Oxone activation. Since Co3O4 can be manipulated to exhibit various shapes, 2-dimensional plate-like morphology of Co3O4 can offer large contact surfaces. If the large plate-like surfaces can be even porous, forming porous nanoplate Co3O4 (PNC), such a PNC should be a promising catalyst for Oxone activation. Therefore, a facile but straightforward method is proposed to prepare such a PNC for activating Oxone to degrade pollutants. In particular, a cobaltic coordination polymer with a morphology of hexagonal nanoplate, which is synthesized through coordination between Co2+ and thiocyanuric acid (TCA), is adopted as a precursor. Through calcination, CoTCA could be transformed into hexagonal nanoplate-like Co3O4 with pores to become PNC. This PNC also shows different characteristics from the commercial Co3O4 nanoparticle (NP) in terms of surficial reactivity and textural properties. Thus, PNC exhibits a much higher catalytic activity than the commercial Co3O4 NP towards activation of Oxone to degrade a model contaminant, salicylic acid (SA). Specifically, SA was 100% degraded by PNC activating Oxone within 120 min, and the Ea of SA degradation by PNC-activated Oxone is 70.2 kJ/mol. PNC can also remain stable and effective for SA degradation even in the presence of other anions, and PNC could be reused over multiple cycles without significant loss of catalytic activity. These features validate that PNC is a promising and useful Co-based catalyst for Oxone activation.
    Matched MeSH terms: Oxides/chemistry*
  12. Nugraha MW, Zainal Abidin NH, Supandi, Sambudi NS
    Chemosphere, 2021 Aug;277:130300.
    PMID: 33774232 DOI: 10.1016/j.chemosphere.2021.130300
    In this present study, the tungsten oxide/amino-functionalized sugarcane bagasse derived-carbon quantum dots (WO3/N-CQDs) composite has successfully been prepared through a simple mixing process. The WO3 was synthesized through a precipitation method, and CQDs were amino-functionalized using ethylenedinitrilotetraacetic acid (EDTA) and ethylenediamine (EDA) through one-pot hydrothermal method. It is revealed that N-CQDs incorporation into WO3 alters the bandgap energy, crystallinity, surface area, and photoluminescence (PL) properties. The produced composites exhibit higher monoclinic WO3 crystallinity, larger surface area, lower bandgap energy and quenched photoluminescence intensity. The as-prepared WO3/N-CQDs composites exhibit better adsorption and photocatalytic degradation performance of methylene blue (MB) than the pristine WO3. It shows that the combination of N-CQDs and WO3 enhanced visible light absorption, by lowering the bandgap energy of WO3 from 2.175 to 1.495 eV. The best performance composite is WO3/N-CQDs EDA 2.5% with an efficiency of 96.86%, removal rate constant of 0.02017/min, and chemical oxidation demand (COD) removal efficiency achieved 84.61%. Moreover, the WO3/N-CQDs EDA 2.5% shows a significant photocatalytic activity even at higher MB initial concentration with 92.93% removal for 50 ppm MB. Subsequently, the composite also has good stability after a sequential 3-times cycle of degradation with 86.85% removal. The increasing photocatalytic performance is affected by the quenching effect of PL and lower bandgap energy. The lower intensity of the PL indicates the reduced charge carrier recombination resulting in increased photocatalytic activity. The combination of N-CQDs and WO3 resulted in improved photodegradation, which shows its significant potential to be utilized for wastewater treatment.
    Matched MeSH terms: Oxides
  13. Pulingam T, Thong KL, Appaturi JN, Lai CW, Leo BF
    Chemosphere, 2021 Oct;281:130739.
    PMID: 34004516 DOI: 10.1016/j.chemosphere.2021.130739
    Recent advances in the field of nanotechnology contributed to the increasing use of nanomaterials in the engineering, health and biological sectors. Graphene oxide (GO) has great potentials as it could be fine-tuned to be adapted into various applications, especially in the electrical, electronic, industrial and clinical fields. One of the important applications of GO is its use as an antibacterial material due to its promising activity against a broad range of bacteria. However, our understanding of the mechanism of action of GO towards bacteria is still lacking and is often less described. Therefore, a comprehensive overview of bactericidal mechanistic actions of GO and the roles of physicochemical factors including size, aggregation, functionalization and adsorption behavior contributing to its antibacterial activities are described in this review. As the use of GO is expected to increase exponentially in the health sector, the cytotoxicity of GO among the cell lines is also discussed. Thus, this review emphasizes the physicochemical characteristics of GO that can be tailored for optimal antibacterial properties that is of importance to the health industry.
    Matched MeSH terms: Oxides/toxicity
  14. Patil KN, Prasad D, Bhagyashree, Manoorkar VK, Nabgan W, Nagaraja BM, et al.
    Chemosphere, 2021 Oct;281:130988.
    PMID: 34289632 DOI: 10.1016/j.chemosphere.2021.130988
    Catalytic hydrolysis of sodium borohydride can potentially be considered as a convenient and safe method to generate hydrogen, an environmentally clean and sustainable fuel for the future. The present effort establishes the development of FeCuCo tri-metallic oxide catalyst by a simple, single-step solution combustion synthesis (SCS) method for hydrogen generation from NaBH4 hydrolysis. Amongst series of FeCuCo tri-metallic oxide catalyst synthesized, FeCuCo with 50:37.5:12.5 wt% respective precursor loading displayed remarkable activity by generating hydrogen at the rate of 1380 mL min-1 g-1 (1242 mL in 18 min) with turnover frequency (TOF) of 62.02 mol g-1 min-1. The catalyst was characterized by using various techniques to understand their physiochemical and morphological properties. The results revealed that the catalyst synthesized by combustion method led to the formation of FeCuCo with appreciable surface area, porous foam-like morphology and high surface acidity. Major factors affecting the hydrolysis of NaBH4 such as catalyst loading, NaOH concentration and temperature variation were studied in detail. Additionally, the FeCuCo catalyst also displayed substantial recyclability performance up to eight cycles without considerable loss in its catalytic activity. Therefore, FeCuCo oxide can be demonstrated as one of the most efficient, cost effective tri-metallic catalyst so far for application in the hydrogen generation.
    Matched MeSH terms: Oxides*
  15. Rashidi Nodeh H, Wan Ibrahim WA, Kamboh MA, Sanagi MM
    Chemosphere, 2017 Jan;166:21-30.
    PMID: 27681257 DOI: 10.1016/j.chemosphere.2016.09.054
    A new graphene-based tetraethoxysilane-methyltrimethoxysilane sol-gel hybrid magnetic nanocomposite (Fe3O4@G-TEOS-MTMOS) was synthesised, characterized and successfully applied in magnetic solid-phase extraction (MSPE) for simultaneous analysis of polar and non-polar organophosphorus pesticides from several water samples. The Fe3O4@G-TEOS-MTMOS nanocomposite was characterized using Fourier transform-infrared spectroscopy, energy-dispersive X-ray spectroscopy, field emission scanning electron microscopy and X-ray diffraction. Separation, determination and quantification were achieved using gas chromatography coupled with micro electron capture detector. Adsorption capacity of the sorbent was calculated using Langmuir equation. MSPE was linear in the range 100-1000 pg mL(-1) for phosphamidon and dimethoate, and 10-100 pg mL(-1) for chlorpyrifos and diazinon, with limit of detection (S/N = 3) of 19.8, 23.7, 1.4 and 2.9 pg mL(-1) for phosphamidon, dimethoate, diazinon and chlorpyrifos, respectively. The LODs obtained is well below the maximum residual level (100 pg mL(-1)) as set by European Union for pesticides in drinking water. Acceptable precision (%RSD) was achieved for intra-day (1.3-8.7%, n = 3) and inter-day (7.6-17.8%, n = 15) analyses. Fe3O4@G-TEOS-MTMOS showed high adsorption capacity (54.4-76.3 mg g(-1)) for the selected OPPs. No pesticide residues were detected in the water samples analysed. Excellent extraction recoveries (83-105%) were obtained for the spiked OPPs from tap, river, lake and sea water samples. The newly synthesised Fe3O4@G-TEOS-MTMOS showed high potential as adsorbent for OPPs analysis.
    Matched MeSH terms: Oxides/chemistry
  16. Sekine M, Akizuki S, Kishi M, Kurosawa N, Toda T
    Chemosphere, 2020 Apr;244:125381.
    PMID: 31805460 DOI: 10.1016/j.chemosphere.2019.125381
    Sulfide inhibition to nitrifying bacteria has prevented the integration of digestate nitrification and biogas desulfurization to simplify anaerobic digestion systems. In this study, liquid digestate with NaHS solution was treated using nitrifying sludge in a sequential-batch reactor with a long fill period, with an ammonium loading rate of 293 mg-N L-1 d-1 and a stepwise increase in the sulfide loading rate from 0 to 32, 64, 128, and 256 mg-S L-1 d-1. Batch bioassays and microbial community analysis were also conducted with reactor sludge under each sulfide loading rate to quantify the microbial acclimatization to sulfide. In the reactor, sulfide was completely removed. Complete nitrification was maintained up to a sulfide load of 128 mg-S L-1 d-1, which is higher than that in previous reports and sufficient for biogas treatment. In the batch bioassays, the sulfide tolerance of NH4+ oxidizing activity (the 50% inhibitory sulfide concentration) increased fourfold over time with the compositional shift of nitrifying bacteria to Nitrosomonas nitrosa and Nitrobacter spp. However, the sulfur removal rate of the sludge slightly decreased, although the abundance of the sulfur-oxidizing bacteria Hyphomicrobium increased by 30%. Therefore, nitrifying sludge was probably acclimatized to sulfide not by the increasing sulfide removal rate but rather by the increasing nitrifying bacteria, which have high sulfide tolerance. Successful simultaneous nitrification and desulfurization were achieved using a sequential-batch reactor with a long fill period, which was effective in facilitating the present acclimatization.
    Matched MeSH terms: Oxides
  17. Nasir AM, Goh PS, Abdullah MS, Ng BC, Ismail AF
    Chemosphere, 2019 Oct;232:96-112.
    PMID: 31152909 DOI: 10.1016/j.chemosphere.2019.05.174
    Heavy metal contamination in aqueous system has attracted global attention due to the toxicity and carcinogenicity effects towards living bodies. Among available removal techniques, adsorptive removal by nanosized materials such as metal oxide, metal organic frameworks, zeolite and carbon-based materials has attracted much attention due to the large active surface area, large number of functional groups, high chemical and thermal stability which led to outstanding adsorption performance. However, the usage of nanosized materials is restricted by the difficulty in separating the spent adsorbent from aqueous solution. The shift towards the use of adsorptive composite membrane for heavy metal ions removal has attracted much attention due to the synergistic properties of adsorption and filtration approaches in a same chamber. Thus, this review critically discusses the development of nanoadsorbents and adsorptive nanocomposite membranes for heavy metal removal over the last decade. The adsorption mechanism of heavy metal ions by the advanced nanoadsorbents is also discussed using kinetic and isotherm models. The challenges and future prospect of adsorptive membrane technology for heavy metal removal is presented at the end of this review.
    Matched MeSH terms: Oxides
  18. Moogi S, Jang SH, Rhee GH, Ko CH, Choi YJ, Lee SH, et al.
    Chemosphere, 2022 Jan;287(Pt 2):132224.
    PMID: 34826918 DOI: 10.1016/j.chemosphere.2021.132224
    Food waste, a renewable resource, was converted to H2-rich gas via a catalytic steam gasification process. The effects of basic oxides (MgO, CaO, and SrO) with 10 wt% Ni/Al2O3 on the gasification properties of food waste were investigated using a U-shaped gasifier. All catalysts prepared by the precipitation method were analyzed by X-ray diffraction, H2-temperature-programmed reduction, NH3-temperature-programmed desorption, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The Ni/Al2O3 catalyst was reduced incompletely, and low nickel concentrations were detected on the surface of the alumina. The basic oxides minimized the number of acid sites and suppressed the formation of nickel-aluminate (NiAlxOy) phase in catalyst. In addition, the basic oxides shifted nickel-aluminate reduction reaction to lower temperatures. It resulted in enhancing nickel concentration on the catalyst surface and increasing gas yield and hydrogen selectivity. The low gas yield of the Ni/Al2O3 catalyst was attributed to the low nickel concentration on the surface. The maximum gas yield (66.0 wt%) and hydrogen selectivity (63.8 vol%) of the 10 wt% SrO- 10 wt% Ni/Al2O3 catalyst correlated with the highly dispersed nickel on the surface and low acidity. Furthermore, coke deposition during steam gasification varied with the surface acidity of the catalysts and less coke was formed on 10 wt% SrO- 10 wt% Ni/Al2O3 due to efficient tar cracking. This study showed that the steam gasification efficiency of the Ni/Al2O3 catalyst could be improved significantly by the addition of SrO.
    Matched MeSH terms: Oxides
  19. Dawood S, Ahmad M, Zafar M, Asif S, Klemeš JJ, Bokhari A, et al.
    Chemosphere, 2022 Mar;291(Pt 2):132780.
    PMID: 34767846 DOI: 10.1016/j.chemosphere.2021.132780
    The present work investigates the proficiency of green silver oxide nanocatalyst synthesised from Monotheca buxifolia (Falc.) Dcne. leaves extract, and their application for biodiesel synthesis from novel Prunus bokhariensis seed oil (non-edible). The seed oil content of 55% and FFA content of 0.80 mg KOH/g were reported. Several analytical tools (EDX, FT-IR, SEM and XRD) were used to characterise the Ag2O nanocatalyst. Maximum (89%) FAME yield of the PBSOB (Prunus bokhariensis seed oil biodiesel) was achieved at ambient transesterification conditions i.e. 3.5 wt% nanocatalyst loading, 2.5 h reaction time, 130 °C of reaction temperature and 12:1 alcohol to oil ratio. The synthesised PBSOB was additionally characterised by analytical methods like, GC-MS and FT-IR. The different aspects of fuel were identified i.e. flash point (84 °C), kinematic viscosity (4.01 cSt @ 40 °C), sulphur content (0.0003 wt %), density (0.853 kg/L) and acid number (0.167 mg KOH/g). All the above properties were verified and agreed well with biodiesel international standards (European Union (14214), China GB/T (20828) and ASTM (6751, 951). In general, Prunus bokhariensis seed oil and Ag2O nanocatalyst seem to be remarkably active, cheap and stable candidates for the biodiesel industry in future.
    Matched MeSH terms: Oxides
  20. Nabgan W, Nabgan B, Ikram M, Jadhav AH, Ali MW, Ul-Hamid A, et al.
    Chemosphere, 2022 Mar;290:133296.
    PMID: 34914962 DOI: 10.1016/j.chemosphere.2021.133296
    The fatty acid methyl ester (FAME) production from dairy effluent scum as a sustainable energy source using CaO obtained from organic ash over titanium dioxide nanoparticles (TNPs) as the transesterification nano-catalyst has been studied. The physical and chemical properties of the synthesized catalysts were characterized, and the effect of different experimental factors on the biodiesel yield was studied. It was revealed that the CaO-TiO2 nano-catalyst displayed bifunctional properties, has both basic and acid phases, and leads to various effects on the catalyst activity in the transesterification process. These bifunctional properties are critical for achieving simultaneous transesterification of dairy scum oil feedstock. According to the reaction results, the catalyst without and with a low ratio of TNPs showed a low catalytic activity. In contrast, the 3Ca-3Ti nano-catalyst had the highest catalytic activity and a strong potential for reusability, producing a maximum biodiesel yield of 97.2% for a 3 wt% catalyst, 1:20 oil to methanol molar ratio for the dairy scum, and a reaction temperature of 70 °C for a period of 120 min under a 300 kPa pressure. The physical properties of the produced biodiesel are within the EN14214 standards.
    Matched MeSH terms: Oxides
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links