Displaying publications 41 - 60 of 144 in total

Abstract:
Sort:
  1. Ahmad Zaharin Aris, Wan YL, Sarva MP, Mohd Kamil Yusoff, Muhamma Firuz Ramli, Hafizan Juahir
    Sains Malaysiana, 2014;43:377-388.
    The water chemistry of selected rivers in Kota Marudu, Sabah was studied based on the major ion chemistry and its suitability for drinking and irrigation purposes. Ten sampling stations were selected and water samples were collected from each station to assess its chemical properties. The physico-chemical variables including temperature, electrical conductivity (EC), total dissolved solids (TDS), salinity, dissolved oxygen (DO), pH, turbidity, ammoniacal-nitrogen (NH3-N), biological oxygen demand (BOD), chemical oxygen demand (COD) and total suspended solid (TSS) were measured. The cations (K, Mg, Ca, Na) were analyzed by ICP-MS. Most of the variables were within the drinking water quality standards stipulated by the World Health Organization (WHO) and the Ministry of Health (MOH), Malaysia except for turbidity. Sodium adsorption ratio (SAR) and salinity hazard were calculated to identify the suitability of the water as irrigation water. The Wilcox diagram classifies that only 10% of samples are not suitable for the purpose of irrigation. The overall results showed that most of the rivers in Kota Marudu are still in a clean condition and suitable for drinking and irrigation purposes except for Sumbilingan River, which is considered as slightly polluted. The results are supported by the hierarchical cluster analysis as the stations were grouped into two groups; low and high pollution intensities. This preliminary result can update the baseline data of selected water quality parameters in the Kota Marudu and could serve as tool for assisting relevant government bodies in regulating the water resources policies in the future.
    Matched MeSH terms: Salinity
  2. Nur Hidayah Roseli, Mohd Fadzil Mohd Akhir
    Sains Malaysiana, 2014;43:1389-1396.
    Oceanographic cruises in Pahang water in October 2003 and April 2004, monsoon transition months, produce data on water characteristics. The temperature in both months showed higher values in nearshore compared to the offshore stations. The nearshore salinity in both months is lower than offshore stations. Comparatively, there were smaller differences in temperature and salinity in October than in April, with very little variation between nearshore and offshore stations. T-S diagram showed significant differences between October and April water characteristics. According to the water characteristic observations, the temperature and salinity in October was lower than in April, while dissolved oxygen was higher than in April. The lower temperature and salinity taken during the sampling time in October suggested that during this time, the study area already received the influences of strong winds due to upcoming monsoon. The warmer and saltier water obtained in April showed that during this time, the study area was influenced by southwest monsoon. Winds related to rainfall were observed to have impact to the dynamics of water characteristics during both months.
    Matched MeSH terms: Salinity
  3. Suratman S, Hussein A, Latif M, Weston K
    Sains Malaysiana, 2014;43:1127-1131.
    Setiu Wetland is located in the southern part of South China Sea, Malaysia. This wetland has diverse ecosystems that represent a vast array of biological diversity and abundance in utilizable natural resources. However, there are large scales of aquaculture activities within and nearby the wetland which could threaten the ecosystems of this area. Thus, the main goal of the study was to assess the impact of these activities through the measurement of physico-chemical water quality parameters and then compare this to a previous study carried out in the same study area. The parameters (salinity, temperature, pH, dissolved oxygen, biological oxygen demand and total suspended solids) were monitored monthly at the surface water from July to October 2008. The results showed that the impact of aquaculture activities on the water quality in the area with dissolved oxygen and total suspended solids concentrations were considerably lower than those observed previously. With respect to the Malaysian Marine Water Quality Criteria and Standard, most of the level of parameters measured remained Class 1, suggesting the physico-chemical environment were in line with sustainable conservation of the marine protected areas and marine parks of this wetland area.
    Matched MeSH terms: Salinity
  4. Ghulam Hasan Abbasi, Javaid Akhtar, Muhammad Anwar-ul-haq, Moazzam Jamil, Shafaqat Ali, Rafiq Ahmad, et al.
    Sains Malaysiana, 2016;45:177-184.
    Effects of NaCl salinity and cadmium on the anti-oxidative activity of enzymes like superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), glutathione reductase (GR) and lipid peroxidation contents; malondialdehyde (MDA) were studied in two maize hybrids of different salt tolerance characteristics. An increase in the amount of lipid peroxidation indicated the oxidative stress induced by NaCl and Cd. The results also depicted that NaCl stress caused an increase in the activities of POD, SOD, CAT, APX and GR while cadmium stress increased the activities of POD, SOD and APX but showed no significant effect on CAT and GR in both the studied hybrids. The combined effect of salinity and cadmium on these parameters was higher than that of sole effect of either NaCl or Cd. It was also found that maize hybrid 26204 had better tolerance against both stresses with strong antioxidant system as compared to that of maize hybrid 8441. A comparison of the antioxidants and lipid peroxidation in two maize hybrids having varying level of NaCl and Cd stress tolerance corroborated the importance of reactive oxygen species (ROS) in defense against abiotic stresses.
    Matched MeSH terms: Salinity
  5. F. Shaari, Mustapha MA
    Sains Malaysiana, 2017;46:1191-1200.
    Determination of chlorophyll-a (Chl-a) distribution in the coastal waters is important to understand the coastal environmental conditions. This study was conducted to understand the spatial and temporal distribution of Chl-a along coastal waters of east Peninsular Malaysia and factors influencing its variability using Chl-a data derived from Aqua MODIS satellite (1 km spatial resolution) from January 2006 to December 2012. Chl-a variability was described using empirical orthogonal function (EOF) analysis. In-situ data (temperature, salinity, density and nitrate) and rainfall data from the Department of Meteorology were analyzed using spatial interpolation to determine factors influencing the distribution of Chl-a. The seasonal progressions of Chl-a showed high value during northeast monsoon along the coast. This variability was described by four modes of the EOF analysis. The first mode (72.08% of total variance) indicated seasonal cycle with high variability along the coast. Second mode (17.03% of variance) explained the northeast monsoon with high variability from river mouth to the south. Third mode (2.39% of variance) indicated variability during southwest monsoon along the coast and much higher to the south. Mode 4 (1.93% of variance) explained the inter-monsoon period observed along the northern and southern coastline. Concentration and distribution of Chl-a were related to availability of nutrient influenced by rainfall. The thermohaline front was also observed to play an important role in accumulation of phytoplankton biomass during northeast and southwest monsoon.
    Matched MeSH terms: Salinity
  6. Mohammed Falalu Hamza, Chandra MS, Zulkifli Merican Aljunid Merican, Hassan Soleimani, D. SK
    Sains Malaysiana, 2017;46:1641-1450.
    Foam flooding technique, commonly known as foam assisted water alternating gas method (FAWAG) has been identified as an effective chemical enhanced oil recovery (CEOR) technique. The ability of EOR-foam to sweep oil in low permeable zones makes it important displacement fluid in the oil industry. However, extreme reservoir conditions such as temperature, pressure and salinity have detrimental effects on the stability and the overall performance of the EOR-foam. Consequently, understanding foam stability and performance under different conditions is crucial for long term oil field application. This paper discusses the current status of the EOR-foam stability, performance and challenges from laboratory studies to field application perspective. The paper also highlights the knowledge gaps which require further research for successful field application.
    Matched MeSH terms: Salinity
  7. Khalidah-Syahirah Ashari, Zeti-Azura Mohamed-Hussein, Muhammad-Redha Abdullah-Zawawi, Sarahani Harun
    Sains Malaysiana, 2018;47:2993-3002.
    Aliphatic glucosinolate is an important secondary metabolite responsible in plant defense mechanism and carcinogenic
    activity. It plays a crucial role in plant adaptation towards changes in the environment such as salinity and drought.
    However, in many plant genomes, there are thousands of genes encoding proteins still with putative functions and
    incomplete annotations. Therefore, the genome of Arabidopsis thaliana was selected to be investigated further to identify
    any putative genes that are potentially involved in the aliphatic glucosinolate biosynthesis pathway, most of its gene are
    with incomplete annotation. Known genes for aliphatic glucosinolates were retrieved from KEGG and AraCyc databases.
    Three co-expression databases i.e., ATTED-II, GeneMANIA and STRING were used to perform the co-expression network
    analysis. The integrated co-expression network was then being clustered, annotated and visualized using Cytoscape plugin,
    MCODE and ClueGO. Then, the regulatory network of A. thaliana from AtRegNet was mapped onto the co-expression
    network to build the transcriptional regulatory network. This study showed that a total of 506 genes were co-expressed
    with the 61 aliphatic glucosinolate biosynthesis genes. Five transcription factors have been predicted to be involved
    in the biosynthetic pathway of aliphatic glucosinolate, namely SEPALLATA 3 (SEP3), PHYTOCHROME INTERACTING FACTOR
    3-like 5 (AtbHLH15/PIL5), ELONGATED HYPOCOTYL 5 (HY5), AGAMOUS-like 15 (AGL15) and GLABRA 3 (GL3). Meanwhile,
    three other genes with high potential to be involved in the aliphatic glucosinolates biosynthetic pathway were identified,
    i.e., methylthioalkylmalate-like synthase 4 (MAML-4) and aspartate aminotransferase (ASP1 and ASP4). These findings
    can be used to complete the aliphatic glucosinolate biosynthetic pathway in A. thaliana and to update the information
    on the glucosinolate-related pathways in public metabolic databases.
    Matched MeSH terms: Salinity
  8. Suhaimi Suratman, Azyyati Abdul Aziz, Norhayati Mohd Tahir, Lee HL
    Sains Malaysiana, 2018;47:651-659.
    A study was carried out to determine the distribution and behaviour of nitrogen (N) compounds (nitrite, nitrate, ammonia,
    dissolved and particulate organic nitrogen) in Sungai Terengganu estuary (TRE). Surface water samples were collected
    during ebb neap and spring tides for the longitudinal survey along the salinity gradient. The results indicated that all N
    compounds behave non-conservatively with addition during both tidal cycles, except for nitrate which exhibited removal
    behaviour during spring tide. In general, higher concentration of N compounds was observed during spring tide compared
    to neap tide. It is suggested that during spring tide, stronger water turbulence resulted in resuspension of nutrients in
    bottom sediment and lead to the increase in N compounds concentrations in the surface water. The diurnal survey for the
    freshwater station showed that the concentrations of N compounds follow the ebb and flood variations, whereas for the
    coastal station the reverse trend was observed. Comparisons with a previous study under similar tidal conditions show
    there was an increase in nitrite and ammonia concentrations in TRE, which was probably due to increase in discharge
    from the rapid development activities around this area. In addition, the presence of a breakwater at the lower part of
    the estuary may also contribute to the high nutrient content in the estuary due to restricted outflow of nutrients to the
    coastal area. Overall, the results from this study highlighted the importance of monitoring the N compounds for future
    protection of the estuary.
    Matched MeSH terms: Salinity
  9. Akbari S, Mahmood SM, Ghaedi H, Al-Hajri S
    Polymers (Basel), 2019 Jun 14;11(6).
    PMID: 31207965 DOI: 10.3390/polym11061046
    Copolymers of acrylamide with the sodium salt of 2-acrylamido-2-methylpropane sulfonic acid-known as sulfonated polyacrylamide polymers-had been shown to produce very promising results in the enhancement of oil recovery, particularly in polymer flooding. The aim of this work is to develop an empirical model through the use of a design of experiments (DOE) approach for bulk viscosity of these copolymers as a function of polymer characteristics (i.e., sulfonation degree and molecular weight), oil reservoir conditions (i.e., temperature, formation brine salinity and hardness) and field operational variables (i.e., polymer concentration, shear rate and aging time). The data required for the non-linear regression analysis were generated from 120 planned experimental runs, which had used the Box-Behnken construct from the typical Response Surface Methodology (RSM) design. The data were collected during rheological experiments and the model that was constructed had been proven to be acceptable with the Adjusted R-Squared value of 0.9624. Apart from showing the polymer concentration as being the most important factor in the determination of polymer solution viscosity, the evaluation of the model terms as well as the Sobol sensitivity analysis had also shown a considerable interaction between the process parameters. As such, the proposed viscosity model can be suitably applied to the optimization of the polymer solution properties for the polymer flooding process and the prediction of the rheological data required for polymer flood simulators.
    Matched MeSH terms: Salinity
  10. Akbari S, Mahmood SM, Tan IM, Ling OL, Ghaedi H
    Polymers (Basel), 2017 Oct 04;9(10).
    PMID: 30965788 DOI: 10.3390/polym9100480
    The viscosity of four new polymers was investigated for the effect of aging at high temperature, with varying degrees of salinity and hardness. The four sulfonated based polyacrylamide co-polymers were FLOCOMB C7035; AN132 VHM; SUPERPUSHER SAV55; and THERMOASSOCIATIF copolymers. All polymer samples were aged at 80 °C for varying times (from zero to at least 90 days) with and without isobutyl alcohol (IBA) as an antioxidant. To see the effect of divalent ions on the polymer solution viscosity, parallel experiments were performed in a mixture of CaCl₂-NaCl of the same ionic strength as 5 wt % NaCl. The polymers without IBA showed severe viscosity reduction after aging for 90 days in both types of preparation (5 wt % NaCl or CaCl₂-NaCl). In the presence of IBA, viscosity was increased when aging time was increased for 5 wt % NaCl. In CaCl₂-NaCl, on the other hand, a viscosity reduction was observed as aging time was increased. This behavior was observed for all polymers except AN132 VHM.
    Matched MeSH terms: Salinity
  11. Akbari S, Mahmood SM, Tan IM, Ghaedi H, Ling OL
    Polymers (Basel), 2017 Nov 27;9(12).
    PMID: 30965947 DOI: 10.3390/polym9120647
    This research aims to test four new polymers for their stability under high salinity/high hardness conditions for their possible use in polymer flooding to improve oil recovery from hydrocarbon reservoirs. The four sulfonated based polyacrylamide co-polymers were FLOCOMB C7035; SUPERPUSHER SAV55; THERMOASSOCIATIF; and AN132 VHM which are basically sulfonated polyacrylamide copolymers of AM (acrylamide) with AMPS (2-Acrylamido-2-Methylpropane Sulfonate). AN132 VHM has a molecular weight of 9⁻11 million Daltons with 32 mol % degree of sulfonation. SUPERPUSHER SAV55 mainly has about 35 mol % sulfonation degree and a molecular weight of 9⁻11 million Daltons. FLOCOMB C7035, in addition, has undergone post-hydrolysis step to increase polydispersity and molecular weight above 18 million Daltons but it has a sulfonation degree much lower than 32 mol %. THERMOASSOCIATIF has a molecular weight lower than 12 million Daltons and a medium sulfonation degree of around 32 mol %, and also contains LCST (lower critical solution temperature) type block, which is responsible for its thermoassociative characteristics. This paper discusses the rheological behavior of these polymers in aqueous solutions (100⁻4500 ppm) with NaCl (0.1⁻10 wt %) measured at 25 °C. The effect of hardness was investigated by preparing a CaCl₂-NaCl solution of same ionic strength as the 5 wt % of NaCl. In summary, it can be concluded that the rheological behavior of the newly modified co-polymers was in general agreement to the existing polymers, except that THERMOASSOCIATIF polymers showed unique behavior, which could possibly make them a better candidate for enhanced oil recovery (EOR) application in high salinity conditions. The other three polymers, on the other hand, are better candidates for EOR applications in reservoirs containing high divalent ions. These results are expected to be helpful in selecting and screening the polymers for an EOR application.
    Matched MeSH terms: Salinity
  12. Shultana R, Kee Zuan AT, Yusop MR, Saud HM
    PLoS One, 2020;15(9):e0238537.
    PMID: 32886707 DOI: 10.1371/journal.pone.0238537
    In this study, we characterized, identified, and determined the effect of salt-tolerant PGPR isolated from coastal saline areas on rice growth and yield. A total of 44 bacterial strains were isolated, and 5 were found to be tolerant at high salt concentration. These isolates were further characterized for salinity tolerance and beneficial traits through a series of quantitative tests. Biochemical characterization showed that bacterial survivability decreases gradually with the increase of salt concentration. One of the strains, UPMRB9, produced the highest amount of exopolysaccharides when exposed to 1.5M of NaCl. Moreover, UPMRB9 absorbed the highest amount of sodium from the 1.5M of NaCl-amended media. The highest floc yield and biofilm were produced by UPMRE6 and UPMRB9 respectively, at 1M of NaCl concentration. The SEM observation confirmed the EPS production of UPMRB9 and UPMRE6 at 1.5M of NaCl concentration. These two isolates were identified as Bacillus tequilensis and Bacillus aryabhattai based on the 16S rRNA gene sequence. The functional group characterization of EPS showed the presence of hydroxyl, carboxyl, and amino groups. This corresponded to the presence of carbohydrates and proteins in the EPS and glucose was identified as the major type of carbohydrate. The functional groups of EPS can help to bind and chelate Na+ in the soil and thereby reduces the plant's exposure to the ion under saline conditions. The plant inoculation study revealed significant beneficial effects of bacterial inoculation on photosynthesis, transpiration, and stomatal conductance of the plant which leads to a higher yield. The Bacillus tequilensis and Bacillus aryabhattai strains showed good potential as PGPR for salinity mitigation practice for coastal rice cultivation.
    Matched MeSH terms: Salinity
  13. Daryabor F, Ooi SH, Abu Samah A, Akbari A
    PLoS One, 2016;11(9):e0162170.
    PMID: 27622552 DOI: 10.1371/journal.pone.0162170
    A three-dimensional Regional Ocean Modelling System is used to study the tidal characteristics and their dynamics in the Sunda Shelf of the southern South China Sea. In this model, the outer domain is set with a 25 km resolution and the inner one, with a 9 km resolution. Calculations are performed on the inner domain. The model is forced at the sea surface by climatological monthly mean wind stress, freshwater (evaporation minus precipitation), and heat fluxes. Momentum and tracers (such as temperature and salinity) are prescribed in addition to the tidal heights and currents extracted from the Oregon State University TOPEX/Poseidon Global Inverse Solution (TPXO7.2) at the open boundaries. The results are validated against observed tidal amplitudes and phases at 19 locations. Results show that the mean average power energy spectrum (in unit m2/s/cph) for diurnal tides at the southern end of the East Coast of Peninsular Malaysia is approximately 43% greater than that in the East Malaysia region located in northern Borneo. In contrast, for the region of northern Borneo the semidiurnal power energy spectrum is approximately 25% greater than that in the East Coast of Peninsular Malaysia. This implies that diurnal tides are dominant along the East Coast of Peninsular Malaysia while both diurnal and semidiurnal tides dominate almost equally in coastal East Malaysia. Furthermore, the diurnal tidal energy flux is found to be 60% greater than that of the semidiurnal tides in the southern South China Sea. Based on these model analyses, the significant tidal mixing frontal areas are located primarily off Sarawak coast as indicated by high chlorophyll-a concentrations in the area.
    Matched MeSH terms: Salinity
  14. Daryabor F, Ooi SH, Samah AA, Akbari A
    PLoS One, 2016;11(7):e0158415.
    PMID: 27410682 DOI: 10.1371/journal.pone.0158415
    A three-dimensional Regional Ocean Modeling System is used to study the seasonal water circulations and transports of the Southern South China Sea. The simulated seasonal water circulations and estimated transports show consistency with observations, e.g., satellite altimeter data set and re-analysis data of the Simple Ocean Data Assimilation. It is found that the seasonal water circulations are mainly driven by the monsoonal wind stress and influenced by the water outflow/inflow and associated currents of the entire South China Sea. The intrusion of the strong current along the East Coast of Peninsular Malaysia and the eddies at different depths in all seasons are due to the conservation of the potential vorticity as the depth increases. Results show that the water circulation patterns in the northern part of the East Coast of Peninsular Malaysia are generally dominated by the geostrophic currents while those in the southern areas are due solely to the wind stress because of negligible Coriolis force there. This study clearly shows that individual surface freshwater flux (evaporation minus precipitation) controls the sea salinity balance in the Southern South China Sea thermohaline circulations. Analysis of climatological data from a high resolution Regional Ocean Modeling System reveals that the complex bathymetry is important not only for water exchange through the Southern South China Sea but also in regulating various transports across the main passages in the Southern South China Sea, namely the Sunda Shelf and the Strait of Malacca. Apart from the above, in comparision with the dynamics of the Sunda Shelf, the Strait of Malacca reflects an equally significant role in the annual transports into the Andaman Sea.
    Matched MeSH terms: Salinity
  15. Ma NL, Che Lah WA, Abd Kadir N, Mustaqim M, Rahmat Z, Ahmad A, et al.
    PLoS One, 2018;13(2):e0192732.
    PMID: 29489838 DOI: 10.1371/journal.pone.0192732
    Salinity threat is estimated to reduce global rice production by 50%. Comprehensive analysis of the physiological and metabolite changes in rice plants from salinity stress (i.e. tolerant versus susceptible plants) is important to combat higher salinity conditions. In this study, we screened a total of 92 genotypes and selected the most salinity tolerant line (SS1-14) and most susceptible line (SS2-18) to conduct comparative physiological and metabolome inspections. We demonstrated that the tolerant line managed to maintain their water and chlorophyll content with lower incidence of sodium ion accumulation. We also examined the antioxidant activities of these lines: production of ascorbate peroxidase (APX) and catalase (CAT) were significantly higher in the sensitive line while superoxide dismutase (SOD) was higher in the tolerant line. Partial least squares discriminant analysis (PLS-DA) score plots show significantly different response for both lines after the exposure to salinity stress. In the tolerant line, there was an upregulation of non-polar metabolites and production of sucrose, GABA and acetic acid, suggesting an important role in salinity adaptation. In contrast, glutamine and putrescine were noticeably high in the susceptible rice. Coordination of different strategies in tolerant and susceptible lines show that they responded differently after exposure to salt stress. These findings can assist crop development in terms of developing tolerance mechanisms for rice crops.
    Matched MeSH terms: Salinity*
  16. Butt M, Sattar A, Abbas T, Hussain R, Ijaz M, Sher A, et al.
    PLoS One, 2021;16(11):e0257893.
    PMID: 34735478 DOI: 10.1371/journal.pone.0257893
    Climate change is causing soil salinization, resulting in huge crop losses throughout the world. Multiple physiological and biochemical pathways determine the ability of plants to tolerate salt stress. Chili (Capsicum annum L.) is a salt-susceptible crop; therefore, its growth and yield is negatively impacted by salinity. Irreversible damage at cell level and photo inhibition due to high production of reactive oxygen species (ROS) and less CO2 availability caused by water stress is directly linked with salinity. A pot experiment was conducted to determine the impact of five NaCl salinity levels, i.e., 0,1.5, 3.0, 5.0 and 7.0 dS m-1 on growth, biochemical attributes and yield of two chili genotypes ('Plahi' and 'A-120'). Salinity stress significantly reduced fresh and dry weight, relative water contents, water use efficiency, leaf osmotic potential, glycine betaine (GB) contents, photosynthetic rate (A), transpiration rate (E), stomatal conductance (Ci), and chlorophyll contents of tested genotypes. Salinity stress significantly enhanced malondialdehyde (MDA) contents and activities of the enzymatic antioxidants such as superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD). In addition, increasing salinity levels significantly reduced the tissue phosphorus and potassium concentrations, while enhanced the tissue sodium and chloride concentrations. Genotype 'Plahi' had better growth and biochemical attributes compared to 'A-120'. Therefore, 'Plahi' is recommended for saline areas to improve chili production.
    Matched MeSH terms: Salinity*
  17. Xu Y, Ye J, Khalofah A, Zuan ATK, Ullah R, El-Shehawi AM
    PLoS One, 2021;16(12):e0260674.
    PMID: 34855863 DOI: 10.1371/journal.pone.0260674
    Conyza sumatrensis (Retz.) E. H. Walker is an obnoxious weed, emerging as an invasive species globally. Seed germination biology of four populations of the species stemming from arid, semi-arid, temperate, and humid regions was determined in this study. Seed germination was recorded under six different environmental cues (i.e., light/dark periods, constant and alternating day and night temperatures, pH, salinity, and osmotic potential levels) in separate experiment for each cue. Populations were main factor, whereas levels of each environmental cue were considered as sub-factor. The impact of seed burial depths on seedling emergence was inferred in a greenhouse pot experiment. Seed germination was recorded daily and four germination indices, i.e., seed germination percentage, mean germination time, time to reach 50% germination, and mean daily germination were computed. Tested populations and levels of different environmental cues had significant impact on various seed germination indices. Overall, seeds stemming from arid and semi-arid regions had higher seed germination potential under stressful and benign environmental conditions compared to temperate and humid populations. Seed of all populations required a definite light period for germination and 12 hours alternating light and dark period resulted in the highest seed germination. Seed germination of all populations occurred under 5-30°C constant and all tested alternate day and night temperatures. However, the highest seed germination was recorded under 20°C. Seeds of arid and semi-arid populations exhibited higher germination under increased temperature, salinity and osmotic potential levels indicating that maternal environment strongly affected germination traits of the tested populations. The highest seed germination of the tested populations was noted under neutral pH, while higher and lower pH than neutral had negative impact on seed germination. Arid and semi-arid populations exhibited higher seed germination under increased pH compared to temperate and humid populations. Seed burial depth had a significant effect on the seedling emergence of all tested populations. An initial increase was noted in seedling emergence percentage with increasing soil depth. However, a steep decline was recorded after 2 cm seed burial depth. These results indicate that maternal environment strongly mediates germination traits of different populations. Lower emergence from >4 cm seed burial depth warrants that deep burial of seeds and subsequent zero or minimum soil disturbance could aid the management of the species in agricultural habitats. However, management strategies should be developed for other habitats to halt the spread of the species.
    Matched MeSH terms: Salinity
  18. Che-Othman MH, Millar AH, Taylor NL
    Plant Cell Environ, 2017 Dec;40(12):2875-2905.
    PMID: 28741669 DOI: 10.1111/pce.13034
    Salinity exerts a severe detrimental effect on crop yields globally. Growth of plants in saline soils results in physiological stress, which disrupts the essential biochemical processes of respiration, photosynthesis, and transpiration. Understanding the molecular responses of plants exposed to salinity stress can inform future strategies to reduce agricultural losses due to salinity; however, it is imperative that signalling and functional response processes are connected to tailor these strategies. Previous research has revealed the important role that plant mitochondria play in the salinity response of plants. Review of this literature shows that 2 biochemical processes required for respiratory function are affected under salinity stress: the tricarboxylic acid cycle and the transport of metabolites across the inner mitochondrial membrane. However, the mechanisms by which components of these processes are affected or react to salinity stress are still far from understood. Here, we examine recent findings on the signal transduction pathways that lead to adaptive responses of plants to salinity and discuss how they can be involved in and be affected by modulation of the machinery of energy metabolism with attention to the role of the tricarboxylic acid cycle enzymes and mitochondrial membrane transporters in this process.
    Matched MeSH terms: Salinity
  19. Ali MN, Yeasmin L, Gantait S, Goswami R, Chakraborty S
    Physiol Mol Biol Plants, 2014 Oct;20(4):411-23.
    PMID: 25320465 DOI: 10.1007/s12298-014-0250-6
    The present investigation was carried out to evaluate 33 rice landrace genotypes for assessment of their salt tolerance at seedling stage. Growth parameters like root length, shoot length and plant biomass were measured after 12 days of exposure to six different levels of saline solution (with electrical conductivity of 4, 6, 8, 10, 12 or 14 dS m (-1)). Genotypes showing significant interaction and differential response towards salinity were assessed at molecular level using 11 simple sequence repeats (SSR) markers, linked with salt tolerance quantitative trait loci. Shoot length, root length and plant biomass at seedling stage decreased with increasing salinity. However, relative salt tolerance in terms of these three parameters varied among genotypes. Out of the 11 SSR markers RM8094, RM336 and RM8046, the most competent descriptors to screen the salt tolerant genotypes with higher polymorphic information content coupled with higher marker index value, significantly distinguished the salt tolerant genotypes. Combining morphological and molecular assessment, four lanraces viz. Gheus, Ghunsi, Kuthiahara and Sholerpona were considered as true salt tolerant genotypes which may contribute in greater way in the development of salt tolerant genotypes in rice.
    Matched MeSH terms: Salinity
  20. Mazumdar P, Lau SE, Singh P, Takhtgahi HM, Harikrishna JA
    Physiol Mol Biol Plants, 2019 May;25(3):713-726.
    PMID: 31168234 DOI: 10.1007/s12298-019-00659-3
    Banana is often grown in coastal-regions, and while known for its sensitivity towards seawater, little is documented on the effect of sea-salt on the growth, physiology and metal homeostasis. Here we report that banana plantlets exposed to sea-salt at extreme (average seawater concentration; 52.7 dS m-1), severe (28.5 dS m-1) or moderate (10.2 dS m-1) salinity levels had reduced root length (2.0-6.0-fold), plant height (1.2-1.6-fold), leaf number (2.0-2.3-fold) and leaf area (3.3-4.0-fold) compared to control plantlets. Degradation of pigments (total chlorophyll: 1.3-12.3-fold, chlorophyll a: 1.3-9.2-fold; chlorophyll b: 1.3-6.9-fold lower and carotenoids: 1.4-3.7-fold lower) reflected vulnerability of photosystems to salt stress. Relative water content showed a maximum decrease of 1.5-fold in salt stress. MDA analysis showed sea-salt exposure triggers 2.3-3.5-fold higher lipid peroxidation. Metal content analysis showed a 73-fold higher Na value from roots exposed to extreme salinity compared to control plantlets. While phenotype was clearly affected, moderate salinity showed no significant alteration of macro (N, P, K and Ca) and micro (Fe, Mn and Cu) metal content. The antioxidant enzymes: SOD (3.2-fold), CAT (1.7-fold) and GR (6-fold) showed higher activity at moderate salinity level compared to control plantlets but lower activity at severe (SOD: 1.3-fold; CAT: 1.5-fold; GR: 2-fold lower) and extreme seawater salinity (SOD: 1.5; CAT: 1.9; GR: 1.3-fold lower). Mild changes in growth and physiology at sea-salt levels equivalent to moderate seawater flooding, indicate that banana will survive such flooding, while extreme seawater inundation will be lethal. This data provides a reference for future salinity-mediated work in banana.
    Matched MeSH terms: Salinity
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links