Displaying publications 41 - 60 of 137 in total

Abstract:
Sort:
  1. Lee HC, Md Yusof HH, Leong MP, Zainal Abidin S, Seth EA, Hewitt CA, et al.
    Int J Neurosci, 2019 Sep;129(9):871-881.
    PMID: 30775947 DOI: 10.1080/00207454.2019.1580280
    Aims: The JAK-STAT signalling pathway is one of the key regulators of pro-gliogenesis process during brain development. Down syndrome (DS) individuals, as well as DS mouse models, exhibit an increased number of astrocytes, suggesting an imbalance of neurogenic-to-gliogenic shift attributed to dysregulated JAK-STAT signalling pathway. The gene and protein expression profiles of JAK-STAT pathway members have not been characterised in the DS models. Therefore, we aimed to profile the expression of Jak1, Jak2, Stat1, Stat3 and Stat6 at different stages of brain development in the Ts1Cje mouse model of DS. Methods: Whole brain samples from Ts1Cje and wild-type mice at embryonic day (E)10.5, E15, postnatal day (P)1.5; and embryonic cortex-derived neurospheres were collected for gene and protein expression analysis. Gene expression profiles of three brain regions (cerebral cortex, cerebellum and hippocampus) from Ts1Cje and wild-type mice across four time-points (P1.5, P15, P30 and P84) were also analysed. Results: In the developing mouse brain, none of the Jak/Stat genes were differentially expressed in the Ts1Cje model compared to wild-type mice. However, Western blot analyses indicated that phosphorylated (p)-Jak2, p-Stat3 and p-Stat6 were downregulated in the Ts1Cje model. During the postnatal brain development, Jak/Stat genes showed complex expression patterns, as most of the members were downregulated at different selected time-points. Notably, embryonic cortex-derived neurospheres from Ts1Cje mouse brain expressed lower Stat3 and Stat6 protein compared to the wild-type group. Conclusion: The comprehensive expression profiling of Jak/Stat candidates provides insights on the potential role of the JAK-STAT signalling pathway during abnormal development of the Ts1Cje mouse brains.
    Matched MeSH terms: STAT Transcription Factors/genetics*
  2. Wong CED, Hua K, Monis S, Saxena V, Norazit A, Noor SM, et al.
    J Neurochem, 2021 02;156(4):481-498.
    PMID: 32583440 DOI: 10.1111/jnc.15108
    Glial cell line-derived neurotrophic factor (GDNF) has been reported to enhance dopaminergic neuron survival and differentiation in vitro and in vivo, although those results are still being debated. Glial cell line-derived neurotrophic factor (gdnf) is highly conserved in zebrafish and plays a role in enteric nervous system function. However, little is known about gdnf function in the teleost brain. Here, we employed clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 to impede gdnf function in the maintenance of dopaminergic neuron development. Genotyping of gdnf crispants revealed successful deletions of the coding region with various mutant band sizes and down-regulation of gdnf transcripts at 1, 3 and 7 day(s) post fertilization. Notably, ~20% reduction in ventral diencephalic dopaminergic neuron numbers in clusters 8 and 13 was observed in the gdnf-deficient crispants. In addition, gdnf depletion caused a modest reduction in dopaminergic neurogenesis as determined by 5-ethynyl-2'-deoxyuridine pulse chase assay. These deleterious effects could be partly attributed to deregulation of dopaminergic neuron fate specification-related transcription factors (otp,lmx1b,shha,and ngn1) in both crispants and established homozygous mutants with whole mount in-situ hybridization (WISH) on gdnf mutants showing reduced otpb and lmx1b.1 expression in the ventral diencephalon. Interestingly, locomotor function of crispants was only impacted at 7 dpf, but not earlier. Lastly, as expected, gdnf deficiency heightened crispants vulnerability to 1-methyl-4-phenylpyridinium toxic insult. Our results suggest conservation of teleost gdnf brain function with mammals and revealed the interactions between gdnf and transcription factors in dopaminergic neuron differentiation.
    Matched MeSH terms: Transcription Factors/genetics
  3. Sukiran NL, Ma JC, Ma H, Su Z
    Plant Mol Biol, 2019 Jan;99(1-2):161-174.
    PMID: 30604322 DOI: 10.1007/s11103-018-0810-1
    KEY MESSAGE: Morphological and transcriptomic evidences provide us strong support for the function of ANAC019 in reproductive development under drought stress. Plants are sensitive to drought conditions, particularly at the reproductive stage. Several studies have reported drought effects on crop reproductive development, but the molecular mechanism underlying drought response during reproduction is still unclear. A recent study showed that drought induces in Arabidopsis inflorescence increased expression of many genes, including ANAC019. However, the function of ANAC019 in drought response during reproductive development has not been characterized. Here, we report an investigation of the ANAC019 function in the response to drought during reproduction. ANAC019 is preferentially expressed in the inflorescence compared with the leaf, suggesting possible roles in regulating both stress response and flower development. The anac019 mutant was more sensitive to drought than WT plant, and exhibited a delay in recovery of floral organ development under prolonged drought stress. Moreover, many fewer genes were differentially expressed in the anac019 inflorescence under drought than that of WT, suggesting that the mutant was impaired in drought-induced gene expression. The genes affected by ANAC019 were associated with stress and hormone responses as well as floral development. In particular, the expression levels of several key drought-induced genes, DREB2A, DREB2B, ARF2, MYB21 and MYB24, were dramatically reduced in the absence of ANAC019, suggesting that ANAC019 is an upstream regulator these genes for drought response and flower development. These results provide strong support for the potential function of ANAC019 in reproductive development under drought stress.
    Matched MeSH terms: Transcription Factors/genetics
  4. Quintero-Yanes A, Lee CM, Monson R, Salmond G
    Environ Microbiol, 2020 07;22(7):2921-2938.
    PMID: 32352190 DOI: 10.1111/1462-2920.15048
    Serratia sp. ATCC 39006 produces intracellular gas vesicles to enable upward flotation in water columns. It also uses flagellar rotation to swim through liquid and swarm across semi-solid surfaces. Flotation and motility can be co-regulated with production of a β-lactam antibiotic (carbapenem carboxylate) and a linear tripyrrole red antibiotic, prodigiosin. Production of gas vesicles, carbapenem and prodigiosin antibiotics, and motility are controlled by master transcriptional and post-transcriptional regulators, including the SmaI/SmaR-based quorum sensing system and the mRNA binding protein, RsmA. Recently, the ribose operon repressor, RbsR, was also defined as a pleiotropic regulator of flotation and virulence factor elaboration in this strain. Here, we report the discovery of a new global regulator (FloR; a DeoR family transcription factor) that modulates flotation through control of gas vesicle morphogenesis. The floR mutation is highly pleiotropic, down-regulating production of gas vesicles, carbapenem and prodigiosin antibiotics, and infection in Caenorhabditis elegans, but up-regulating flagellar motility. Detailed proteomic analysis using TMT peptide labelling and LC-MS/MS revealed that FloR is a physiological master regulator that operates through subordinate pleiotropic regulators including Rap, RpoS, RsmA, PigU, PstS and PigT.
    Matched MeSH terms: Transcription Factors/genetics
  5. Yaacob NS, Bakar RA, Norazmi MN
    Ann Clin Lab Sci, 2004;34(1):47-56.
    PMID: 15038667
    The polymerase chain reaction (PCR) is useful for amplifying specific mRNAs, particularly those present in low copy numbers. However, due to the exponential nature of the amplification process, PCR cannot readily be used to quantify gene expression. A competitive PCR technique was developed to address this shortcoming. An internal standard that is 100% homologous to, but shorter than, the target gene was constructed. The practicality of the method was demonstrated by determining the expression levels of a human transcription factor, peroxisome proliferator-activated receptor gamma 1 (hPPARgamma1) which is normally present in low copy numbers in selected cells. A mock system was used to test the accuracy and sensitivity of the method, which was subsequently used to determine the expression of this receptor in lipopolysaccharide (LPS)-activated monocytes, which are known to express hPPARgamma1 differentially during cellular activation. Densitometric analysis showed that the competitive PCR method reliably estimated the expression levels of hPPARgamma1 at the attomole (10(-18)) level in monocytes.
    Matched MeSH terms: Transcription Factors/genetics*
  6. Moad AI, Muhammad TS, Oon CE, Tan ML
    Cell Biochem Biophys, 2013 Jul;66(3):567-87.
    PMID: 23300026 DOI: 10.1007/s12013-012-9504-5
    Autophagy is an evolutionarily conserved lysosomal degradation pathway and plays a critical role in the homeostatic process of recycling proteins and organelles. Functional relationships have been described between apoptosis and autophagy. Perturbations in the apoptotic machinery have been reported to induce autophagic cell deaths. Inhibition of autophagy in cancer cells has resulted in cell deaths that manifested hallmarks of apoptosis. However, the molecular relationships and the circumstances of which molecular pathways dictate the choice between apoptosis and autophagy are currently unknown. This study aims to identify specific gene expression of rapamycin-induced autophagy and the effects of rapamycin when the autophagy process is inhibited. In this study, we have demonstrated that rapamycin is capable of inducing autophagy in T-47D breast carcinoma cells. However, when the autophagy process was inhibited by 3-MA, the effects of rapamycin became apoptotic. The Phlda1 gene was found to be up-regulated in both autophagy and apoptosis and silencing this gene was found to reduce both activities, strongly suggests that Phlda1 mediates and positively regulates both autophagy and apoptosis pathways.
    Matched MeSH terms: Transcription Factors/genetics
  7. Ma XR, Edmund Sim UH, Pauline B, Patricia L, Rahman J
    Trop Biomed, 2008 Apr;25(1):46-57.
    PMID: 18600204 MyJurnal
    Colorectal carcinoma (CRC) arises as a result of mutational activation of oncogenes coupled with inactivation of tumour suppressor genes. Mutations in APC, K-ras and p53 have been commonly reported. In a previous study by our group, the tumour susceptibility gene 101 (TSG101) were found to be persistently upregulated in CRC cases. TSG101 was reported to be closely related to cancers of the breast, brain and colon, and its overexpression in human papillary thyroid carcinomas and ovarian carcinomas had previously been reported. The wingless-type MMTV integration site family member 2 (WNT2) is potentially important in the Wnt/beta-catenin pathway and upregulation of WNT2 is not uncommon in human cancers. In this study, we report the investigation for mutation(s) and expression pattern(s) of WNT2 and TSG101, in an effort to further understand their role(s) in CRC tumourigenesis. Our results revealed no mutation in these genes, despite their persistent upregulation in CRC cases studied.
    Matched MeSH terms: Transcription Factors/genetics*
  8. Yang C, Li S, Li X, Li H, Li Y, Zhang C, et al.
    J Cell Mol Med, 2019 05;23(5):3549-3562.
    PMID: 30834718 DOI: 10.1111/jcmm.14254
    Sonic hedgehog (SHH) is a vertebrate homologue of the secreted Drosophila protein hedgehog and is expressed by the notochord and floor plate in the developing spinal cord. Sonic hedgehog provides signals relevant for positional information, cell proliferation and possibly cell survival, depending on the time and location of expression. Although the role of SHH in providing positional information in the neural tube has been experimentally proven, the underlying mechanism remains unclear. In this study, in ovo electroporation was employed in the chicken spinal cord during chicken embryo development. Electroporation was conducted at stage 17 (E2.5), after electroporation the embryos were continued incubating to stage 28 (E6) for sampling, tissue fixation with 4% paraformaldehyde and frozen sectioning. Sonic hedgehog and related protein expressions were detected by in situ hybridization and fluorescence immunohistochemistry and the results were analysed after microphotography. Our results indicate that the ectopic expression of SHH leads to ventralization in the spinal cord during chicken embryonic development by inducing abnormalities in the structure of the motor column and motor neuron integration. In addition, ectopic SHH expression inhibits the expression of dorsal transcription factors and commissural axon projections. The correct location of SHH expression is vital to the formation of the motor column. Ectopic expression of SHH in the spinal cord not only affects the positioning of motor neurons, but also induces abnormalities in the structure of the motor column. It leads to ventralization in the spinal cord, resulting in the formation of more ventral neurons forming during neuronal formation.
    Matched MeSH terms: Transcription Factors/genetics
  9. Wilson BT, Stark Z, Sutton RE, Danda S, Ekbote AV, Elsayed SM, et al.
    Genet Med, 2016 05;18(5):483-93.
    PMID: 26204423 DOI: 10.1038/gim.2015.110
    PURPOSE: Cockayne syndrome (CS) is a rare, autosomal-recessive disorder characterized by microcephaly, impaired postnatal growth, and premature pathological aging. It has historically been considered a DNA repair disorder; fibroblasts from classic patients often exhibit impaired transcription-coupled nucleotide excision repair. Previous studies have largely been restricted to case reports and small series, and no guidelines for care have been established.

    METHODS: One hundred two study participants were identified through a network of collaborating clinicians and the Amy and Friends CS support groups. Families with a diagnosis of CS could also self-recruit. Comprehensive clinical information for analysis was obtained directly from families and their clinicians.

    RESULTS AND CONCLUSION: We present the most complete evaluation of Cockayne syndrome to date, including detailed information on the prevalence and onset of clinical features, achievement of neurodevelopmental milestones, and patient management. We confirm that the most valuable prognostic factor in CS is the presence of early cataracts. Using this evidence, we have created simple guidelines for the care of individuals with CS. We aim to assist clinicians in the recognition, diagnosis, and management of this condition and to enable families to understand what problems they may encounter as CS progresses.Genet Med 18 5, 483-493.

    Matched MeSH terms: Transcription Factors/genetics
  10. Kazmi I, Alharbi KS, Al-Abbasi FA, Almalki WH, G SK, Yasmeen A, et al.
    Crit Rev Eukaryot Gene Expr, 2021;31(2):89-95.
    PMID: 34347983 DOI: 10.1615/CritRevEukaryotGeneExpr.2021037996
    Among various epithelial-to-mesenchymal transition (EMT)-related transcription factors (TFs), altered expression levels of Snail-1, Snail-2/Slug, Twist, and ZEB1 have shown a significant association in different cancers having a higher risk of metastasis. However, their role in the circulation of endometriosis patients is not well understood. Hence, the present study was designed to evaluate the crucial role of these TFs in defining the molecular pathogenesis for endometriosis progression and differentiation from control subjects. The qualitative and quantitative expression analysis of Snail-1, Snail-2/Slug, Twist, and ZEB1 were analyzed in peripheral blood samples of 75 different stages of endometriosis patients and compared with 50 control subjects. Total RNA was extracted and converted into complementary DNA (cDNA) for relative quantification of each gene transcript using SYBRGreen-based reverse transcriptase quantitative polymerase chain reaction (RT-qPCR). The Livak method of relative quantification was used for calculating the fold change in each TF compared with endogenous control. All four selected TFs showed significantly upregulated expression levels in endometriosis patients compared with control subjects. A three-fold increase was observed for Snail-1 (p = 0.0001), and a two-fold increase was observed for Snail-2 (p = 0.01), Twist (p = 0.0002), and ZEB1 (p = 0.001) in stage III and IV compared with stage I and II of endometriosis patients. The present study revealed that EMT-related TFs play a crucial role in the pathogenesis and differentiating different stages of endometriosis patients through expression analysis of specific molecular cascades using non-invasive tools.
    Matched MeSH terms: Snail Family Transcription Factors/genetics*
  11. Mirsafian H, Ripen AM, Manaharan T, Mohamad SB, Merican AF
    OMICS, 2016 11;20(11):627-634.
    PMID: 27828772
    Transcriptome analyses based on high-throughput RNA sequencing (RNA-Seq) provide powerful and quantitative characterization of cell types and in-depth understanding of biological systems in health and disease. In this study, we present a comprehensive transcriptome profile of human primary monocytes, a crucial component of the innate immune system. We performed deep RNA-Seq of monocytes from six healthy subjects and integrated our data with 10 other publicly available RNA-Seq datasets of human monocytes. A total of 1.9 billion reads were generated, which allowed us to capture most of the genes transcribed in human monocytes, including 11,994 protein-coding genes, 5558 noncoding genes (including long noncoding RNAs, precursor miRNAs, and others), 2819 pseudogenes, and 7034 putative novel transcripts. In addition, we profiled the expression pattern of 1155 transcription factors (TFs) in human monocytes, which are the main molecules in controlling the gene transcription. An interaction network was constructed among the top expressed TFs and their targeted genes, which revealed the potential key regulatory genes in biological function of human monocytes. The gene catalog of human primary monocytes provided in this study offers significant promise and future potential clinical applications in the fields of precision medicine, systems diagnostics, immunogenomics, and the development of innovative biomarkers and therapeutic monitoring strategies.
    Matched MeSH terms: Transcription Factors/genetics*
  12. Toegel M, Azzam G, Lee EY, Knapp DJHF, Tan Y, Fa M, et al.
    Nat Commun, 2017 11 21;8(1):1663.
    PMID: 29162808 DOI: 10.1038/s41467-017-01592-3
    Binary expression systems have revolutionised genetic research by enabling delivery of loss-of-function and gain-of-function transgenes with precise spatial-temporal resolution in vivo. However, at present, each existing platform relies on a defined exogenous transcription activator capable of binding a unique recognition sequence. Consequently, none of these technologies alone can be used to simultaneously target different tissues or cell types in the same organism. Here, we report a modular system based on programmable transcription activator-like effector (TALE) proteins, which enables parallel expression of multiple transgenes in spatially distinct tissues in vivo. Using endogenous enhancers coupled to TALE drivers, we demonstrate multiplexed orthogonal activation of several transgenes carrying cognate variable activating sequences (VAS) in distinct neighbouring cell types of the Drosophila central nervous system. Since the number of combinatorial TALE-VAS pairs is virtually unlimited, this platform provides an experimental framework for highly complex genetic manipulation studies in vivo.
    Matched MeSH terms: Transcription Factors/genetics*
  13. Vrzalikova K, Ibrahim M, Vockerodt M, Perry T, Margielewska S, Lupino L, et al.
    Leukemia, 2018 01;32(1):214-223.
    PMID: 28878352 DOI: 10.1038/leu.2017.275
    The Hodgkin/Reed-Sternberg cells of classical Hodgkin lymphoma (HL) are characterised by the aberrant activation of multiple signalling pathways. Here we show that a subset of HL displays altered expression of sphingosine-1-phosphate (S1P) receptors (S1PR)s. S1P activates phosphatidylinositide 3-kinase (PI3-K) in these cells that is mediated by the increased expression of S1PR1 and the decreased expression of S1PR2. We also showed that genes regulated by the PI3-K signalling pathway in HL cell lines significantly overlap with the transcriptional programme of primary HRS cells. Genes upregulated by the PI3-K pathway included the basic leucine zipper transcription factor, ATF-like 3 (BATF3), which is normally associated with the development of dendritic cells. Immunohistochemistry confirmed that BATF3 was expressed in HRS cells of most HL cases. In contrast, in normal lymphoid tissues, BATF3 expression was confined to a small fraction of CD30-positive immunoblasts. Knockdown of BATF3 in HL cell lines revealed that BATF3 contributed to the transcriptional programme of primary HRS cells, including the upregulation of S1PR1. Our data suggest that disruption of this potentially oncogenic feedforward S1P signalling loop could provide novel therapeutic opportunities for patients with HL.
    Matched MeSH terms: Basic-Leucine Zipper Transcription Factors/genetics*
  14. Chen KS, Bridges CR, Lynton Z, Lim JWC, Stringer BW, Rajagopal R, et al.
    J Neurooncol, 2020 Jan;146(1):41-53.
    PMID: 31760595 DOI: 10.1007/s11060-019-03352-3
    INTRODUCTION: Malignant astrocytomas are composed of heterogeneous cell populations. Compared to grade IV glioblastoma, low-grade astrocytomas have more differentiated cells and are associated with a better prognosis. Therefore, inducing cellular differentiation to alter the behaviour of high-grade astrocytomas may serve as a therapeutic strategy. The nuclear factor one (NFI) transcription factors are essential for normal astrocytic differentiation. Here, we investigate whether family members NFIA and NFIB act as effectors of cellular differentiation in glioblastoma.

    METHODS: We analysed expression of NFIA and NFIB in mRNA expression data of high-grade astrocytoma and with immunofluorescence co-staining. Furthermore, we induced NFI expression in patient-derived subcutaneous glioblastoma xenografts via in vivo electroporation.

    RESULTS: The expression of NFIA and NFIB is reduced in glioblastoma as compared to lower grade astrocytomas. At a cellular level, their expression is associated with differentiated and mature astrocyte-like tumour cells. In vivo analyses consistently demonstrate that expression of either NFIA or NFIB is sufficient to promote tumour cell differentiation in glioblastoma xenografts.

    CONCLUSION: Our findings indicate that both NFIA and NFIB may have an endogenous pro-differentiative function in astrocytomas, similar to their role in normal astrocyte differentiation. Overall, our study establishes a basis for further investigation of targeting NFI-mediated differentiation as a potential differentiation therapy.

    Matched MeSH terms: NFI Transcription Factors/genetics
  15. Suleman M, Sayaf AM, Khan A, Khan SA, Albekairi NA, Alshammari A, et al.
    J Infect Public Health, 2024 Jul;17(7):102448.
    PMID: 38815532 DOI: 10.1016/j.jiph.2024.05.005
    BACKGROUND: Influenza A virus causes severe respiratory illnesses, especially in developing nations where most child deaths under 5 occur due to lower respiratory tract infections. The RIG-I protein acts as a sensor for viral dsRNA, triggering interferon production through K63-linked poly-ubiquitin chains synthesized by TRIM25. However, the influenza A virus's NS1 protein hinders this process by binding to TRIM25, disrupting its association with RIG-I and preventing downstream interferon signalling, contributing to the virus's evasion of the immune response.

    METHODS: In our study we used structural-based drug designing, molecular simulation, and binding free energy approaches to identify the potent phytocompounds from various natural product databases (>100,000 compounds) able to inhibit the binding of NS1 with the TRIM25.

    RESULTS: The molecular screening identified EA-8411902 and EA-19951545 from East African Natural Products Database, NA-390261 and NA-71 from North African Natural Products Database, SA-65230 and SA- 4477104 from South African Natural Compounds Database, NEA- 361 and NEA- 4524784 from North-East African Natural Products Database, TCM-4444713 and TCM-6056 from Traditional Chinese Medicines Database as top hits. The molecular docking and binding free energies results revealed that these compounds have high affinity with the specific active site residues (Leu95, Ser99, and Tyr89) involved in the interaction with TRIM25. Additionally, analysis of structural dynamics, binding free energy, and dissociation constants demonstrates a notably stronger binding affinity of these compounds with the NS1 protein. Moreover, all selected compounds exhibit exceptional ADMET properties, including high water solubility, gastrointestinal absorption, and an absence of hepatotoxicity, while adhering to Lipinski's rule.

    CONCLUSION: Our molecular simulation findings highlight that the identified compounds demonstrate high affinity for specific active site residues involved in the NS1-TRIM25 interaction, exhibit exceptional ADMET properties, and adhere to drug-likeness criteria, thus presenting promising candidates for further development as antiviral agents against influenza A virus infections.

    Matched MeSH terms: Transcription Factors/genetics
  16. Mohamad Shah NS, Sulong S, Wan Sulaiman WA, Halim AS
    Mol Genet Genomic Med, 2019 May;7(5):e635.
    PMID: 30924295 DOI: 10.1002/mgg3.635
    BACKGROUND: Nonsyndromic cleft lip and/or palate is one of the most common human birth defects worldwide that affects the lip and/or palate. The incidence of clefts varies among populations through ethnic, race, or geographical differences. The focus on Malay nonsyndromic cleft lip and/or palate (NSCL/P) is because of a scarce report on genetic study in relation to this deformity in Malaysia. We are interested to discuss about the genes that are susceptible to cause orofacial cleft formation in the family.

    METHODS: Genome-wide linkage analysis was carried out on eight large extended families of NSCL/P with the total of 91 individuals among Malay population using microarray platform. Based on linkage analyses findings, copy number variation (CNV) of LPHN2, SATB2, PVRL3, COL21A1, and TOX3 were identified in four large extended families that showed linkage evidence using quantitative polymerase chain reaction (qPCR) as for a validation purpose. Copy number calculated (CNC) for each genes were determined with Applied Biosystems CopyCallerTM Software v2.0. Normal CNC of the target sequence expected was set at two.

    RESULTS: Genome-wide linkage analysis had discovered several genes including TOX3 and COL21A1 in four different loci 4p15.2-p16.1, 6p11.2-p12.3, 14q13-q21, and 16q12.1. There was significant decreased, p 

    Matched MeSH terms: Transcription Factors/genetics
  17. Yeap WC, Lee FC, Shabari Shan DK, Musa H, Appleton DR, Kulaveerasingam H
    Plant J, 2017 Jul;91(1):97-113.
    PMID: 28370622 DOI: 10.1111/tpj.13549
    The oil biosynthesis pathway must be tightly controlled to maximize oil yield. Oil palm accumulates exceptionally high oil content in its mesocarp, suggesting the existence of a unique fruit-specific fatty acid metabolism transcriptional network. We report the complex fruit-specific network of transcription factors responsible for modulation of oil biosynthesis genes in oil palm mesocarp. Transcriptional activation of EgWRI1-1 encoding a key master regulator that activates expression of oil biosynthesis genes, is activated by three ABA-responsive transcription factors, EgNF-YA3, EgNF-YC2 and EgABI5. Overexpression of EgWRI1-1 and its activators in Arabidopsis accelerated flowering, increased seed size and oil content, and altered expression levels of oil biosynthesis genes. Protein-protein interaction experiments demonstrated that EgNF-YA3 interacts directly with EgWRI1-1, forming a transcription complex with EgNF-YC2 and EgABI5 to modulate transcription of oil biosynthesis pathway genes. Furthermore, EgABI5 acts downstream of EgWRKY40, a repressor that interacts with EgWRKY2 to inhibit the transcription of oil biosynthesis genes. We showed that expression of these activators and repressors in oil biosynthesis can be induced by phytohormones coordinating fruit development in oil palm. We propose a model highlighting a hormone signaling network coordinating fruit development and fatty acid biosynthesis.
    Matched MeSH terms: Transcription Factors/genetics
  18. Rodrigues P, Patel SA, Harewood L, Olan I, Vojtasova E, Syafruddin SE, et al.
    Cancer Discov, 2018 Jul;8(7):850-865.
    PMID: 29875134 DOI: 10.1158/2159-8290.CD-17-1211
    Metastases, the spread of cancer cells to distant organs, cause the majority of cancer-related deaths. Few metastasis-specific driver mutations have been identified, suggesting aberrant gene regulation as a source of metastatic traits. However, how metastatic gene expression programs arise is poorly understood. Here, using human-derived metastasis models of renal cancer, we identify transcriptional enhancers that promote metastatic carcinoma progression. Specific enhancers and enhancer clusters are activated in metastatic cancer cell populations, and the associated gene expression patterns are predictive of poor patient outcome in clinical samples. We find that the renal cancer metastasis-associated enhancer complement consists of multiple coactivated tissue-specific enhancer modules. Specifically, we identify and functionally characterize a coregulatory enhancer cluster, activated by the renal cancer driver HIF2A and an NF-κB-driven lymphoid element, as a mediator of metastasis in vivo We conclude that oncogenic pathways can acquire metastatic phenotypes through cross-lineage co-option of physiologic epigenetic enhancer states.Significance: Renal cancer is associated with significant mortality due to metastasis. We show that in metastatic renal cancer, functionally important metastasis genes are activated via co-option of gene regulatory enhancer modules from distant developmental lineages, thus providing clues to the origins of metastatic cancer. Cancer Discov; 8(7); 850-65. ©2018 AACR.This article is highlighted in the In This Issue feature, p. 781.
    Matched MeSH terms: Basic Helix-Loop-Helix Transcription Factors/genetics*
  19. Yam H, Rahim AA, Mohamad S, Mahadi NM, Manaf UA, Shu-Chien AC, et al.
    PLoS One, 2014;9(6):e99218.
    PMID: 24927285 DOI: 10.1371/journal.pone.0099218
    Burkholderia pseudomallei is an opportunistic pathogen and the causative agent of melioidosis. It is able to adapt to harsh environments and can live intracellularly in its infected hosts. In this study, identification of transcriptional factors that associate with the β' subunit (RpoC) of RNA polymerase was performed. The N-terminal region of this subunit is known to trigger promoter melting when associated with a sigma factor. A pull-down assay using histidine-tagged B. pseudomallei RpoC N-terminal region as bait showed that a hypothetical protein BPSS1356 was one of the proteins bound. This hypothetical protein is conserved in all B. pseudomallei strains and present only in the Burkholderia genus. A BPSS1356 deletion mutant was generated to investigate its biological function. The mutant strain exhibited reduced biofilm formation and a lower cell density during the stationary phase of growth in LB medium. Electron microscopic analysis revealed that the ΔBPSS1356 mutant cells had a shrunken cytoplasm indicative of cell plasmolysis and a rougher surface when compared to the wild type. An RNA microarray result showed that a total of 63 genes were transcriptionally affected by the BPSS1356 deletion with fold change values of higher than 4. The expression of a group of genes encoding membrane located transporters was concurrently down-regulated in ΔBPSS1356 mutant. Amongst the affected genes, the putative ion transportation genes were the most severely suppressed. Deprivation of BPSS1356 also down-regulated the transcriptions of genes for the arginine deiminase system, glycerol metabolism, type III secretion system cluster 2, cytochrome bd oxidase and arsenic resistance. It is therefore obvious that BPSS1356 plays a multiple regulatory roles on many genes.
    Matched MeSH terms: Transcription Factors/genetics*
  20. Soo TCC, Bhassu S
    PLoS One, 2021;16(10):e0258655.
    PMID: 34653229 DOI: 10.1371/journal.pone.0258655
    Diseases have remained the major issue for shrimp aquaculture industry for decades by which different shrimp species demonstrated alternative disease resistance or tolerance. However, there had been insufficient studies on the underlying host mechanisms of such phenomenon. Hence, in this study, the main objective involves gaining a deeper understanding into the functional importance of shrimp STAT gene from the aspects of expression, sequence, structure, and associated genes. STAT gene was selected primarily because of its vital signalling roles in stress, endocrine, and immune response. The differential gene expressions of Macrobrachium rosenbergii STAT (MrST) and Penaeus monodon STAT (PmST) under White Spot Syndrome Virus (WSSV) and Vibrio parahaemolyticus/VpAHPND infections were identified through qPCR analysis. Notably, during both pathogenic infections, MrST demonstrated significant gene expression down-regulations (during either early or later post-infection time points) whereas PmST showed only significant gene expression up-regulations. Important sequence conservation or divergence was highlighted through STAT sequence comparison especially amino acid alterations at 614 aa [K (Lysine) to E (Glutamic Acid)] and 629 aa [F (Phenylalanine) to V (Valine)] from PmST (AY327491.1) to PmST (disease tolerant strain). There were significant differences observed between in silico characterized structures of MrST and PmST proteins. Important functional differentially expressed genes (DEGs) in the aspects of stress, endocrine, immune, signalling, and structural were uncovered through comparative transcriptomic analysis. The DEGs associated with STAT functioning were identified including inositol 1,4,5-trisphosphate receptor, hsp90, caspase, ATP binding cassette transmembrane transporter, C-type Lectin, HMGB, ALF1, ALF3, superoxide dismutase, glutathione peroxidase, catalase, and TBK1. The main findings of this study are STAT differential gene expression patterns, sequence divergence, structural differences, and associated functional DEGs. These findings can be further utilized for shrimp health or host response diagnostic studies. STAT gene can also be proposed as a suitable candidate for future studies of shrimp innate immune enhancement.
    Matched MeSH terms: STAT Transcription Factors/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links