Displaying publications 41 - 60 of 217 in total

Abstract:
Sort:
  1. Bangbai C, Techitdheera W, Chongsri K, Pecharapa W
    Sains Malaysiana, 2013;42:239-246.
    In this work, the preparation of ZnO, N-doped ZnO (NZO), Al-doped ZnO (AZO) and Al, N-doped ZnO (ANZO) thin films by the sol-gel spin-coating method is reported. The structural properties and surface morphologies of films were characterized by X-ray diffraction (XRD) and field emission scanning electron microscope (FE-SEM). The optical properties of the films were interpreted from their transmission spectra using UV-VIS spectrophotometer. The XRD and SEM results disclosed that the crystallization quality and grain size of as-prepared films were highly influenced by N and Al doping. UV-VIS spectrophotometer results indicated that Al and N additives could significantly enhance the optical transparency and induce the blue-shift in optical bandgap of ZnO films.
    Matched MeSH terms: Zinc Oxide
  2. C.G. Ching, Leonard Lu, C.I. Ang, P.K. Ooi, S.S. Ng, Z. Hassan, et al.
    Sains Malaysiana, 2013;42:1327-1332.
    The present study reports on the fabrication of porous zinc oxide by wet chemical etching. ZnO thin films were deposited via radio-frequency magnetron sputtering on p-type silicon with (111) preferred orientation. The etchants used in the present work were 0.1% and 1.0% nitric acid (HNO3) solutions. ZnO were etched at various times and were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence (PL) spectroscopy to allow the examination of their structural and optical properties. The XRD results revealed that the intensity of ZnO(002) decreased when the thin films were etched in varying HNO3 concentrations over different periods of time. The above observation is attributed to the dissolution of the ZnO(002). The SEM images showed that the thickness of the ZnO layers decreased over the etching time, which resulted from the isotropic etching by the HNO3 solution. The PL emission intensity initially increased with increasing etching time. However, with further etching of the samples, the PL spectra showed a decreasing trend in intensity as a result of the decrease in the surface-to-volume ratio. All results lead to the conclusion that 1.0% HNO3 has the capability to change the ZnO surface significantly.
    Matched MeSH terms: Zinc Oxide
  3. AWANG R, SITI N.H.M. DAUD, CHI CY, MOHAMMAD HAFIZUDDIN HAJI JUMALI, ZALITA Z
    Sains Malaysiana, 2013;42:1663-1670.
    Filem nipis ZnO terdop Ga (ZnO:Ga) disediakan menggunakan teknik sol-gel dan salutan berputar. Ga didopkan kepada ZnO dengan peratusan berat (wt. %) yang berbeza iaitu 0, 2, 4, 6 dan 8 wt. %. Kesan pengedopan Ga ke atas struktur dan sifat optik filem nipis ZnO dikaji. Pencirian struktur filem nipis ini dilakukan menggunakan kaedah pembelauan sinar-X (XRD), mikroskop imbasan elektron pancaran medan (FESEM) dan mikroskop daya atom (AFM). Pencirian sifat optik filem nipis pula dilakukan menggunakan spektroskopi ultraungu cahaya nampak (UV-VIS) dan fotoluminesen (PL). Ujian XRD mengesahkan kesemua sampel berstruktur wurtzit. Saiz kristalit ZnO mengecil dengan peningkatan peratusan berat Ga seterusnya mengurangkan kekasaran permukaan filem. Pengedopan Ga menunjukkan peratus transmisi cahaya pada panjang gelombang 300 - 380 nm bertambah berbanding filem nipis ZnO tanpa dop. Nilai jurang tenaga optik, Eg dan keamatan PL filem nipis ZnO meningkat apabila pengedopan Ga dilakukan. Hasil kajian ini menunjukkan saiz kristalit yang lebih kecil memberi kesan ke atas sifat optik sampel pada peratus pengedopan Ga 0-6%. Pada peratus pengedopan Ga yang lebih tinggi, kesan transformasi struktur menjadi lebih dominan dalam mempengaruhi nilai Eg.
    Matched MeSH terms: Zinc Oxide
  4. Baki S, Tan L, Kan C, Kamari H, Noor A, Mardi M
    Sains Malaysiana, 2014;43:843-850.
    Multicomposition of Er3+ -Y11-3+ codoped tellurite oxide, Te02-ZnO-PbO-Ti02-Na20 glass has been investigated. A detailed spectroscopic study of the Judd-Ofelt analysis has been performed from the measured absorption spectrum in order to obtain the intensity parameters S2, (t=2, 4, 6). The calculated S2, values were then utilized in the determination of transition probabilities, radiative lifetimes and branching ratios of the Er3+ transitions between the J(upper)-J'(lower) manifolds. Both visible upconversion and near-infrared spectra were characterized under the 980 nm laser diode excitation at room temperature.
    Matched MeSH terms: Zinc Oxide
  5. Baiuitiar Ul Haq, Ahmed R, Shaari A, Afaq A, Hussain R
    Sains Malaysiana, 2014;43:813-817.
    The central theme of nanotechnology to miniaturize devices has stimulated interest in diluted magnetic semiconductors (DMS). DMS that simultaneously exhibit magnetic and semiconducting behavior are capable of parting properties of two different function devices into one. In this research we present our first principles investigations related to the structural and electronic properties of, Cr doped zinc-blende (zB) ZnO, DMS. These calculations are carried out using full potential linearized augmented plane wave plus local orbital (FP-L(APW+lo)) with generalized gradient approximations approach as implemented in WIEN2k code. In this study, the effect of Cr doping on lattice parameters, spin polarized electronic band structure, density of states (Dos) of ZnO is presented and analyzed in detail.
    Matched MeSH terms: Zinc Oxide
  6. Yap CC, Muhammad Yahaya, Muhamad Mat Salleh, Dee CF
    Sains Malaysiana, 2008;37:233-237.
    ZnO nanowires have been synthesized using a catalyst-free carbothermal reduction approach on SiO2-coated Si substrates in a flowing nitrogen atmosphere with a mixture of ZnO and graphite as reactants. The collected ZnO nanowires have been characterized by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy and photoluminescence spectroscopy. Controlled growth of the ZnO nanowires was achieved by manipulating the reactants heating temperature from 700 to 1000 oC. It was found that the optimum temperature to synthesize high density and long ZnO nanowires was about 800 0C. The possible growth mechanism of ZnO nanowires is also proposed.
    Matched MeSH terms: Zinc Oxide
  7. Gokhan Gunduz, Barbaros Yaman, Seray Ozden, Suleyman Donmez
    Sains Malaysiana, 2013;42:547-552.
    Composite archery bows have been well known and used by Asiatic societies for thousands of years. The Turkish composite bow, made of wood, horn, sinew and glue is one of the most famous and powerful bows in the world. Because of its high draw weight and mechanical efficiency, the Turkish composite bow became a powerful weapon in the Seljuk and the Ottoman empire. In addition to being a powerful weapon of war, at the same time the bow and arrow (archery) continued
    to be a sport of Ottoman (sultans, state officials, janissaries) until the late Ottoman period. In this study of the Ottoman composite archery bows in the collections of Izmir Ethnography Museum, a small wood sample was investigated on the basis of its wood anatomy. The results showed that it was made of maple wood (Acer sp.) and some of its qualitative and quantitative anatomical properties are presented here. One of the key properties for the identification of maple wood is
    the helical thickening throughout the body of the vessel element. Helical thickenings in vessel elements in cutting surfaces of maple-wooden core increase the bonding surface between the wood and sinew-horn. In most of the woods preferred traditionally for bow-making, helical thickenings in tracheids, vessel elements or ground tissue fibres should be taken into account at a hierarchy of cellular structures for elucidating the efficiency of Ottoman composite-wooden bow.
    Matched MeSH terms: Zinc Oxide
  8. Ching C, Om P, Ng S, Hassan Z, Abu Hassan H, Abdullah M
    Sains Malaysiana, 2014;43:923-927.
    In this work, the structural properties of radio frequency sputtering-grown zinc oxide (ZnO) thin films on sapphire (Al203), gallium arsenide (GaAs) and n-type silicon (Si) substrates were characterized. Scanning electron microscopy was employed to study the surface morphology of the samples. X-ray diffraction (xRD) measurements were also performed to obtain the structural information of the samples. The xRD results showed that the ZnO layers grown on different substrates have similar lattice constant (c) values, which were used to calculate the strain percentages of the ZnO thin films. The surface morphologies of the ZnO thin films indicated the formation of a granular surface when ZnO is deposited on n-type Si(100) and Si( 111 ) substrates. Meanwhile, a leaf-like surface is obtained when ZnO is deposited on GaAs and Al203 substrates. The results showed that the ZnO thin film grown on n-type Si(100) has the best quality among all the samples.
    Matched MeSH terms: Zinc Oxide
  9. Ehsan Borzouyan Dastjerdi, Ismail Sahid, Khairiah Jusoh
    Sains Malaysiana, 2016;45:1183-1190.
    Due to the increasing production and use of nanoparticles in various sectors such as electronic industries and healthcare,
    concerns about the unknown effects caused by the presence of these materials in the natural environment and agricultural
    systems were on the rise. Because of the growing trend of ZnO nanoparticles (nZnO) which is one of the most widely
    used nanoparticles being released into the environment, it has attracted the attention for more studies to be done on
    the effects of this nanoparticle on organisms. This study was carried out to investigate the phytotoxicity effect of nZnO
    on groundnut seedlings in Murashige and Skoog (MS) medium. The experimental treatments of this study include eight
    concentrations of nZnO (10, 30, 50, 100, 200, 400, 1000 & 2000 mg.L-1) added to MS medium and MS medium without
    nanoparticles have been used as control treatment. For the first 6 days after sowing, germination percent and germination
    rate index were calculated by counting the germinated seeds every day. Groundnut seedlings were incubated for 3 weeks
    in optimum condition and after that, seedling characteristics such as length, wet and dry weight of radicle and plumule
    were measured. The water content of radicle and plumule were also calculated. The results of this study showed that
    radicle and plumule length of groundnut seedlings were affected by nZnO exposure, in a way that length of radicles in 50
    mg.L-1 nZnO and higher concentrations was significantly lower than that of control treatment and the shortest plumule
    length was observed in 2000 mg.L-1 nZnO concentration treatment. Both the radicle and plumule wet weight were also
    decreased as the nanoparticle concentration was increased. However, despite the decreasing in radicle and plumule dry
    weight with increasing in nZnO concentration, this increase was not significant. However radicle dry weight in 10 mg.L-1
    nZnO was significantly higher than nZnOtreatments with 200 mg.L-1 concentration and higher concentrations. Moreover,
    observations of this study did not show any significant difference between the water content of nZnO concentration
    treatments and control treatment.
    Matched MeSH terms: Zinc Oxide
  10. Salina Shaharun, Maizatul S. Shaharun, Mohamad F.M. Shah, Nurul A. Amer
    Sains Malaysiana, 2018;47:207-214.
    Catalytic hydrogenation of carbon dioxide (CO2) to methanol is an attractive way to recycle and utilize CO2. A series of Cu/ZnO/Al2O3/ZrO2 catalysts (CZAZ) containing different molar ratios of Cu/Zn were prepared by the co-precipitation method. The catalysts were characterized by temperature-programmed reduction (TPR), field emission scanning electron microscopy-energy dispersive x-ray analysis (FESEM-EDX) and X-ray diffraction (XRD). Higher surface area, SABET values (42.6-59.9 m2/g) were recorded at low (1) and high (5) Cu/Zn ratios with the minimum value of 35.71 m2/g was found for a Cu/Zn of 3. The reducibility of the metal oxides formed after calcination of catalyst samples was also affected due to change in metal-support interaction. At a reaction temperature of 443 K, total gas pressure of 3.0 MPa and 0.1 g/mL of the CZAZ catalyst, the selectivity to methanol decreased as the Cu/Zn molar ratio increased, and the maximum selectivity of 93.9 was achieved at Cu/Zn molar ratio of 0.33. With a reaction time of 3h, the best performing catalyst was CZAZ75 with Cu/Zn molar ratio of 5 giving methanol yield of 6.4%.
    Matched MeSH terms: Zinc Oxide
  11. Nikathirah Yusoff, Li-ngee Ho, Soon-an Ong, Yee-shian Wong, Wanfadhilah Khalik, Muhammad Fahmi Ridzwan
    Sains Malaysiana, 2017;46:2507-2514.
    Zinc oxide (ZnO) utilization in advanced oxidation process (AOP) via solar-photocatalytic process was a promising method for alternative treating wastewater containing phenol. The ZnO photocatalyst semiconductor was synthesized by sol-gel method. The morphology of the ZnO nanostructures was observed by using scanning electron microscope (SEM) and the crystallite phase of the ZnO was confirmed by x-ray diffraction (XRD). The objective of this study was to synthesis ZnO nanoparticles through a sol-gel method for application as a photocatalyst in the photodegradation of phenol under solar light irradiation. The photodegradation rate of phenol increased with the increasing of ZnO loading from 0.2 until 1.0 g. Only 2 h were required for synthesized ZnO to fully degrade the phenol. The synthesized ZnO are capable to totally degrade high initial concentration up until 45 mg L-1 within 6 h of reaction time. The photodegradation of phenol by ZnO are most favoured under the acidic condition (pH3) where the 100% removal achieved after 2 h of reaction. The mineralization of phenol was monitored through chemical oxygen demand (COD) reduction and 92.6% or removal was achieved. This study distinctly utilized natural sunlight as the sole sources of irradiation which safe, inexpensive; to initiate the photocatalyst for degradation of phenol.
    Matched MeSH terms: Zinc Oxide
  12. Rafiqul ISM, Mimi Sakinah AM, Zularisam AW
    Prep Biochem Biotechnol, 2021;51(10):1060-1070.
    PMID: 33724897 DOI: 10.1080/10826068.2021.1897840
    Enzymatic production of bioxylitol from lignocellulosic biomass (LCB) provides a promising alternative to both chemical and fermentative routes. This study aimed to assess the impacts of catalytic variables on bioxylitol production from wood sawdust using xylose reductase (XR) enzyme and to optimize the bioprocess. Enzyme-based xylitol production was carried out in batch cultivation under various experimental conditions to obtain maximum xylitol yield and productivity. The response surface methodology (RSM) was followed to fine-tune the most significant variables such as reaction time, temperature, and pH, which influence the synthesis of bioxylitol from sawdust hydrolysate and to optimize them. The optimum time, temperature, and pH became were 12.25 h, 35 °C, and 6.5, respectively, with initial xylose 18.8 g/L, NADPH 2.83 g/L, XR 0.027 U/mg, and agitation 100 rpm. The maximum xylitol production was attained at 16.28 g/L with a yield and productivity of 86.6% (w/w) and 1.33 g/L·h, respectively. Optimization of catalytic parameters using sequential strategies resulted in 1.55-fold improvement in overall xylitol production. This study explores a novel strategy for using sawdust hemicellulose in bioxylitol production by enzyme technology.
    Matched MeSH terms: Zinc Oxide/metabolism*
  13. Ramiah SK, Awad EA, Mookiah S, Idrus Z
    Poult Sci, 2019 Sep 01;98(9):3828-3838.
    PMID: 30839088 DOI: 10.3382/ps/pez093
    The use of nanominerals, such as nano-zinc, represents a promising and emerging technology in the animal farming industry. Due to the small particle size and bioavailability of nano-zinc, it can be easily assimilated in the digestive system, thereby reducing excretion and environmental pollution. The present study was conducted to assess the effects of zinc oxide nanoparticles (ZnONPs) on the growth performance, zinc (Zn) concentration in edible tissues, thiobarbituric acid reactive substance, and corticosterone concentrations in broilers reared under normal or heat stress environmental conditions. The experiment was performed with a completely randomized design based on a 4 × 2 factorial arrangement consisting of 4 diets (basal diet + 60 mg/kg conventional zinc oxide as control diet; basal diet + 40 mg/kg of ZnONPs; basal diet + 60 mg/kg of ZnONPs; and basal diet + 100 mg/kg of ZnONPs) and 2 environmental conditions (normal and heat stress). On day 22, birds from each dietary group were divided equally to normal temperature (23 ± 1°C throughout) or heat stress conditions (34 ± 1°C daily for 6 h from 10:00 am until 4:00 pm). From 1 to 42 D of age, the broiler chickens fed 100 mg/kg ZnONPs exhibited lower feed intake and feed conversion ratio than the control. The accumulation of Zn in the liver of broilers was significantly higher among all treatment groups compared to breast and thigh muscle tissues regardless of the temperature conditions. At 40 and 60 mg/kg ZnONPs, the malondialdehyde content increased in thigh muscle of broilers at 7 D postmortem, indicating that ZnONPs potentially inhibited the antioxidant system in muscle tissues. The control and ZnONPs at 40 mg/kg and 60 mg/kg led to low serum corticosterone levels that may be attributed to the antioxidant and antistress properties of Zn. Taken together, although supplementation with ZnONPs at 40 mg/kg and 60 mg/kg alleviated the negative results of heat stress, further research is needed to determine the optimal level of dietary ZnONPs supplementation.
    Matched MeSH terms: Zinc Oxide/administration & dosage; Zinc Oxide/metabolism*
  14. Perumal V, Hashim U, Gopinath SC, Haarindraprasad R, Liu WW, Poopalan P, et al.
    PLoS One, 2015;10(12):e0144964.
    PMID: 26694656 DOI: 10.1371/journal.pone.0144964
    The creation of an appropriate thin film is important for the development of novel sensing surfaces, which will ultimately enhance the properties and output of high-performance sensors. In this study, we have fabricated and characterized zinc oxide (ZnO) thin films on silicon substrates, which were hybridized with gold nanoparticles (AuNPs) to obtain ZnO-Aux (x = 10, 20, 30, 40 and 50 nm) hybrid structures with different thicknesses. Nanoscale imaging by field emission scanning electron microscopy revealed increasing film uniformity and coverage with the Au deposition thickness. Transmission electron microscopy analysis indicated that the AuNPs exhibit an increasing average diameter (5-10 nm). The face center cubic Au were found to co-exist with wurtzite ZnO nanostructure. Atomic force microscopy observations revealed that as the Au content increased, the overall crystallite size increased, which was supported by X-ray diffraction measurements. The structural characterizations indicated that the Au on the ZnO crystal lattice exists without any impurities in a preferred orientation (002). When the ZnO thickness increased from 10 to 40 nm, transmittance and an optical bandgap value decreased. Interestingly, with 50 nm thickness, the band gap value was increased, which might be due to the Burstein-Moss effect. Photoluminescence studies revealed that the overall structural defect (green emission) improved significantly as the Au deposition increased. The impedance measurements shows a decreasing value of impedance arc with increasing Au thicknesses (0 to 40 nm). In contrast, the 50 nm AuNP impedance arc shows an increased value compared to lower sputtering thicknesses, which indicated the presence of larger sized AuNPs that form a continuous film, and its ohmic characteristics changed to rectifying characteristics. This improved hybrid thin film (ZnO/Au) is suitable for a wide range of sensing applications.
    Matched MeSH terms: Zinc Oxide/chemistry*
  15. Saw KG, Tneh SS, Yam FK, Ng SS, Hassan Z
    PLoS One, 2014;9(2):e89348.
    PMID: 24586707 DOI: 10.1371/journal.pone.0089348
    The concentration of acceptor carriers, depletion width, magnitude of donor level movement as well as the sensitivity factor are determined from the UV response of a heterojunction consisting of ZnO on type IIb diamond. From the comparison of the I-V measurements in dark condition and under UV illumination we show that the acceptor concentration (∼10(17) cm(-3)) can be estimated from p-n junction properties. The depletion width of the heterojunction is calculated and is shown to extend farther into the ZnO region in dark condition. Under UV illumination, the depletion width shrinks but penetrates both materials equally. The ultraviolet illumination causes the donor level to move closer to the conduction band by about 50 meV suggesting that band bending is reduced to allow more electrons to flow from the intrinsically n-type ZnO. The sensitivity factor of the device calculated from the change of threshold voltages, the ratio of dark and photocurrents and identity factor is consistent with experimental data.
    Matched MeSH terms: Zinc Oxide/chemistry*
  16. Saw KG, Tneh SS, Tan GL, Yam FK, Ng SS, Hassan Z
    PLoS One, 2014;9(1):e86544.
    PMID: 24466144 DOI: 10.1371/journal.pone.0086544
    The current-voltage characteristics of Ni contacts with the surfaces of ZnO thin films as well as single crystal (0001) ZnO substrate are investigated. The ZnO thin film shows a conversion from Ohmic to rectifying behavior when annealed at 800°C. Similar findings are also found on the Zn-polar surface of (0001) ZnO. The O-polar surface, however, only shows Ohmic behavior before and after annealing. The rectifying behavior observed on the Zn-polar and ZnO thin film surfaces is associated with the formation of nickel zinc oxide (Ni1-xZnxO, where x = 0.1, 0.2). The current-voltage characteristics suggest that a p-n junction is formed by Ni1-xZnxO (which is believed to be p-type) and ZnO (which is intrinsically n-type). The rectifying behavior for the ZnO thin film as a result of annealing suggests that its surface is Zn-terminated. Current-voltage measurements could possibly be used to determine the surface polarity of ZnO thin films.
    Matched MeSH terms: Zinc Oxide/chemistry*
  17. Ridhuan NS, Razak KA, Lockman Z, Abdul Aziz A
    PLoS One, 2012;7(11):e50405.
    PMID: 23189199 DOI: 10.1371/journal.pone.0050405
    In this study, zinc oxide (ZnO) nanorod arrays were synthesized using a simple hydrothermal reaction on ZnO seeds/n-silicon substrate. Several parameters were studied, including the heat-treatment temperature to produce ZnO seeds, zinc nitrate concentration, pH of hydrothermal reaction solution, and hydrothermal reaction time. The optimum heat-treatment temperature to produce uniform nanosized ZnO seeds was 400°C. The nanorod dimensions depended on the hydrothermal reaction parameters. The optimum hydrothermal reaction parameters to produce blunt tip-like nanorods (770 nm long and 80 nm in top diameter) were 0.1 M zinc nitrate, pH 7, and 4 h of growth duration. Phase analysis studies showed that all ZnO nanorods exhibited a strong (002) peak. Thus, the ZnO nanorods grew in a c-axis preferred orientation. A strong ultraviolet (UV) emission peak was observed for ZnO nanorods grown under optimized parameters with a low, deep-level emission peak, which indicated high optical property and crystallinity of the nanorods. The produced ZnO nanorods were also tested for their UV-sensing properties. All samples responded to UV light but with different sensing characteristics. Such different responses could be attributed to the high surface-to-volume ratio of the nanorods that correlated with the final ZnO nanorods morphology formed at different synthesis parameters. The sample grown using optimum synthesis parameters showed the highest responsivity of 0.024 A/W for UV light at 375 nm under a 3 V bias.
    Matched MeSH terms: Zinc Oxide/chemistry*
  18. Saw KG, Aznan NM, Yam FK, Ng SS, Pung SY
    PLoS One, 2015;10(10):e0141180.
    PMID: 26517364 DOI: 10.1371/journal.pone.0141180
    The Burstein-Moss shift and band gap narrowing of sputtered indium-doped zinc oxide (IZO) thin films are investigated as a function of carrier concentrations. The optical band gap shifts below the carrier concentration of 5.61 × 1019 cm-3 are well-described by the Burstein-Moss model. For carrier concentrations higher than 8.71 × 1019 cm-3 the shift decreases, indicating that band gap narrowing mechanisms are increasingly significant and are competing with the Burstein-Moss effect. The incorporation of In causes the resistivity to decrease three orders of magnitude. As the mean-free path of carriers is less than the crystallite size, the resistivity is probably affected by ionized impurities as well as defect scattering mechanisms, but not grain boundary scattering. The c lattice constant as well as film stress is observed to increase in stages with increasing carrier concentration. The asymmetric XPS Zn 2p3/2 peak in the film with the highest carrier concentration of 7.02 × 1020 cm-3 suggests the presence of stacking defects in the ZnO lattice. The Raman peak at 274 cm-1 is attributed to lattice defects introduced by In dopants.
    Matched MeSH terms: Zinc Oxide/chemistry*
  19. Haarindraprasad R, Hashim U, Gopinath SC, Kashif M, Veeradasan P, Balakrishnan SR, et al.
    PLoS One, 2015;10(7):e0132755.
    PMID: 26167853 DOI: 10.1371/journal.pone.0132755
    The performance of sensing surfaces highly relies on nanostructures to enhance their sensitivity and specificity. Herein, nanostructured zinc oxide (ZnO) thin films of various thicknesses were coated on glass and p-type silicon substrates using a sol-gel spin-coating technique. The deposited films were characterized for morphological, structural, and optoelectronic properties by high-resolution measurements. X-ray diffraction analyses revealed that the deposited films have a c-axis orientation and display peaks that refer to ZnO, which exhibits a hexagonal structure with a preferable plane orientation (002). The thicknesses of ZnO thin films prepared using 1, 3, 5, and 7 cycles were measured to be 40, 60, 100, and 200 nm, respectively. The increment in grain size of the thin film from 21 to 52 nm was noticed, when its thickness was increased from 40 to 200 nm, whereas the band gap value decreased from 3.282 to 3.268 eV. Band gap value of ZnO thin film with thickness of 200 nm at pH ranging from 2 to 10 reduces from 3.263eV to 3.200 eV. Furthermore, to evaluate the transducing capacity of the ZnO nanostructure, the refractive index, optoelectric constant, and bulk modulus were analyzed and correlated. The highest thickness (200 nm) of ZnO film, embedded with an interdigitated electrode that behaves as a pH-sensing electrode, could sense pH variations in the range of 2-10. It showed a highly sensitive response of 444 μAmM-1cm-2 with a linear regression of R2 =0.9304. The measured sensitivity of the developed device for pH per unit is 3.72μA/pH.
    Matched MeSH terms: Zinc Oxide/chemistry*
  20. Adil M, Lee K, Mohd Zaid H, A Shukur MF, Manaka T
    PLoS One, 2020;15(12):e0244738.
    PMID: 33382855 DOI: 10.1371/journal.pone.0244738
    Utilization of metal-oxide nanoparticles (NPs) in enhanced oil recovery (EOR) has generated substantial recent research interest in this area. Among these NPs, zinc oxide nanoparticles (ZnO-NPs) have demonstrated promising results in improving oil recovery due to their prominent thermal properties. These nanoparticles can also be polarized by electromagnetic (EM) field, which offers a unique Nano-EOR approach called EM-assisted Nano-EOR. However, the impact of NPs concentrations on oil recovery mechanism under EM field has not been well established. For this purpose, ZnO nanofluids (ZnO-NFs) of two different particle sizes (55.7 and 117.1 nm) were formed by dispersing NPs between 0.01 wt.% to 0.1 wt.% in a basefluid of sodium dodecylbenzenesulfonate (SDBS) and NaCl to study their effect on oil recovery mechanism under the electromagnetic field. This mechanism involved parameters, including mobility ratio, interfacial tension (IFT) and wettability. The displacement tests were conducted in water-wet sandpacks at 95˚C, by employing crude oil from Tapis. Three tertiary recovery scenarios have been performed, including (i) SDBS surfactant flooding as a reference, (ii) ZnO-NFs flooding, and (iii) EM-assisted ZnO-NFs flooding. Compare with incremental oil recovery from surfactant flooding (2.1% original oil in place/OOIP), nanofluid flooding reaches up to 10.2% of OOIP at optimal 0.1 wt.% ZnO (55.7 nm). Meanwhile, EM-assisted nanofluid flooding at 0.1 wt.% ZnO provides a maximum oil recovery of 10.39% and 13.08% of OOIP under EM frequency of 18.8 and 167 MHz, respectively. By assessing the IFT/contact angle and mobility ratio, the optimal NPs concentration to achieve a favorable ER effect and interfacial disturbance is determined, correlated to smaller hydrodynamic-sized nanoparticles that cause strong electrostatic repulsion between particles.
    Matched MeSH terms: Zinc Oxide*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links