Displaying publications 41 - 53 of 53 in total

Abstract:
Sort:
  1. Butt J, Jenab M, Werner J, Fedirko V, Weiderpass E, Dahm CC, et al.
    Gut Microbes, 2021;13(1):1-14.
    PMID: 33874856 DOI: 10.1080/19490976.2021.1903825
    Experimental evidence has implicated genotoxic Escherichia coli (E. coli) and enterotoxigenic Bacteroides fragilis (ETBF) in the development of colorectal cancer (CRC). However, evidence from epidemiological studies is sparse. We therefore assessed the association of serological markers of E. coli and ETBF exposure with odds of developing CRC in the European Prospective Investigation into Nutrition and Cancer (EPIC) study.Serum samples of incident CRC cases and matched controls (n = 442 pairs) were analyzed for immunoglobulin (Ig) A and G antibody responses to seven E. coli proteins and two isoforms of the ETBF toxin via multiplex serology. Multivariable-adjusted conditional logistic regression analyses were used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for the association of sero-positivity to E. coli and ETBF with CRC.The IgA-positivity of any of the tested E. coli antigens was associated with higher odds of developing CRC (OR: 1.42; 95% CI: 1.05-1.91). Dual-positivity for both IgA and IgG to E. coli and ETBF was associated with >1.7-fold higher odds of developing CRC, with a significant association only for IgG (OR: 1.75; 95% CI: 1.04, 2.94). This association was more pronounced when restricted to the proximal colon cancers (OR: 2.62; 95% CI: 1.09, 6.29) compared to those of the distal colon (OR: 1.24; 95% CI: 0.51, 3.00) (pheterogeneity = 0.095). Sero-positivity to E. coli and ETBF was associated with CRC development, suggesting that co-infection of these bacterial species may contribute to colorectal carcinogenesis. These findings warrant further exploration in larger prospective studies and within different population groups.
    Matched MeSH terms: Antigens, Bacterial/immunology
  2. Fang CM, Zainuddin ZF, Musa M, Thong KL
    Protein Expr Purif, 2006 Jun;47(2):341-7.
    PMID: 16510294 DOI: 10.1016/j.pep.2005.12.007
    Tuberculosis remains a major infectious disease with over 8 million new cases and 2 million deaths annually. Therefore, a vaccine more potent than BCG is desperately needed. In this regard, an approximately 800 bp DNA encoding a mycobacterial synthetic gene designated as VacIII (containing ubiquitin gene UbGR and four immunogenic mycobacterial epitopes or genes of ESAT-6, Phos1, Hsp 16.3, and Mtb8.4) was sub-cloned into a bacterial expression vector of pRSET-B resulting in a 6 x His-VacIII fusion gene construction. This recombinant clone was over expressed in Escherichia coli BL-21 (DE-3). The expressed fusion protein was found almost entirely in the insoluble form (inclusion bodies) in cell lysate. The inclusion bodies were solubilized with 8M urea and the recombinant protein was purified by Ni-NTA column and dialyzed by urea gradient dialysis. This method produced a relatively high yield of recombinant VacIII protein and the cloned VacIII gene offers the potential development of other vaccine formats such as DNA vaccine and recombinant vaccine.
    Matched MeSH terms: Antigens, Bacterial/immunology
  3. Mohd Yasin IS, Mohd Yusoff S, Mohd ZS, Abd Wahid Mohd E
    Trop Anim Health Prod, 2011 Jan;43(1):179-87.
    PMID: 20697957 DOI: 10.1007/s11250-010-9672-5
    This study was carried out to determine the antibody responses and protective capacity of an inactivated recombinant vaccine expressing the fimbrial protein of Pasteurella multocida B:2 following intranasal vaccination against hemorrhagic septicemia in goats. Goats were vaccinated intranasal with 10(6) CFU/mL of the recombinant vaccine (vaccinated group) and 10(6) CFU/mL of pET32/LIC vector without fimbrial protein (control group). All three groups were kept separated before all goats in the three groups were challenged with 10(9) CFU/mL of live pathogenic P. multocida B:2. During the course of study, both serum and lung lavage fluid were collected to evaluate the antibody levels via enzyme-linked immunosorbent assay. It was found that goats immunized with the inactivated recombinant vaccine developed a strong and significantly (p 
    Matched MeSH terms: Antigens, Bacterial/immunology*
  4. Oveissi S, Omar AR, Yusoff K, Jahanshiri F, Hassan SS
    Comp Immunol Microbiol Infect Dis, 2010 Dec;33(6):491-503.
    PMID: 19781778 DOI: 10.1016/j.cimid.2009.08.004
    The H5 gene of avian influenza virus (AIV) strain A/chicken/Malaysia/5744/2004(H5N1) was cloned into pcDNA3.1 vector, and Esat-6 gene of Mycobacterium tuberculosis was fused into downstream of the H5 gene as a genetic adjuvant for DNA vaccine candidates. The antibody level against AIV was measured using enzyme-linked immunosorbent assay (ELISA) and haemagglutination inhibition (HI) test. Sera obtained from specific-pathogen-free chickens immunized with pcDNA3.1/H5 and pcDNA3.1/H5/Esat-6 demonstrated antibody responses as early as 2 weeks after the first immunization. Furthermore, the overall HI antibody titer in chickens immunized with pcDNA3.1/H5/Esat-6 was higher compared to the chickens immunized with pcDNA3.1/H5 (p<0.05). The results suggested that Esat-6 gene of M. tuberculosis is a potential genetic adjuvant for the development of effective H5 DNA vaccine in chickens.
    Matched MeSH terms: Antigens, Bacterial/immunology
  5. Sosroseno W, Bird PS, Gemmell E, Seymour GJ
    Oral Microbiol. Immunol., 2003 Oct;18(5):318-22.
    PMID: 12930525
    Mucosal presentation of Actinomyces viscosus results in antigen-specific systemic immune suppression, known as oral tolerance. The aim of the present study was to determine the mechanism by which this oral tolerance is induced. DBA/2 mice were gastrically immunized with A. viscosus. Serum, Peyer's patch (PP) and spleen cells were transferred to syngeneic recipients which were then systemically challenged with the sameiA. viscosus strain. To determine antigen-specificity of cells from gastrically immunized mice, recipients which received immune spleen cells were also challenged with Porphyromonas gingivalis. One week after the last systemic challenge, the delayed type hypersensitivity (DTH) response was determined by footpad swelling and the level of serum IgG, IgA and IgM antibodies to A. viscosus or P. gingivalis measured by an ELISA. No suppression of DTH response or of specific serum antibodies was found in recipients which received serum from gastrically immunized mice. Systemic immune suppression to A. viscosus was observed in recipients which had been transferred with PP cells obtained 2 days but not 4 and 6 days after gastric immunization with A. viscosus. Conversely, suppressed immune response could be seen in recipients transferred with spleen cells obtained 6 days after gastric immunization. The immune response to P. gingivalis remained unaltered in mice transferred with A. viscosus-gastrically immunized cells. The results of the present study suggest that oral tolerance induced by A. viscosus may be mediated by antigen-specific suppressor cells which originate in the PP and then migrate to the spleen.
    Matched MeSH terms: Antigens, Bacterial/immunology
  6. Mohamud R, Azlan M, Yero D, Alvarez N, Sarmiento ME, Acosta A, et al.
    BMC Immunol, 2013;14 Suppl 1:S5.
    PMID: 23458635 DOI: 10.1186/1471-2172-14-S1-S5
    Recombinant Mycobacterium bovis bacille Calmette-Guèrin (rBCG) expressing three T cell epitopes of Mycobacterium tuberculosis (MTB) Ag85B antigen (P1, P2, P3) fused to the Mtb8.4 protein (rBCG018) or a combination of these antigens fused to B cell epitopes from ESAT-6, CFP-10 and MTP40 proteins (rBCG032) were used to immunize Balb/c mice. Total IgG responses were determined against Mtb8.4 antigen and ESAT-6 and CFP-10 B cell epitopes after immunization with rBCG032. Mice immunized with rBCG032 showed a significant increase in IgG1 and IgG2a antibodies against ESAT-6 and MTP40 (P1) B cell epitopes and IgG3 against both P1 and P2 B cell epitopes of MPT40. Splenocytes from mice immunized with rBCG018 proliferated against Ag85B P2 and P3 T cell epitopes and Mtb8.4 protein whereas those from mice-immunized with rBCG032 responded against all Ag85B epitopes and the ESAT-6 B cell epitope. CD4⁺ and CD8⁺ lymphocytes from mice immunized with rBCG018 produced primarily Th1 type cytokines in response to the T cell epitopes. Similar pattern of recognition against the T cell epitopes were obtained with rBCG032 with the additional recognition of ESAT-6, CFP-10 and one of the MTP40 B cell epitopes with the same pattern of cytokines. This study demonstrates that rBCG constructs expressing either T or T and B cell epitopes of MTB induced appropriate immunogenicity against MTB.
    Matched MeSH terms: Antigens, Bacterial/immunology*
  7. Mohd Ali MR, Sum JS, Aminuddin Baki NN, Choong YS, Nor Amdan NA, Amran F, et al.
    Int J Biol Macromol, 2021 Jan 31;168:289-300.
    PMID: 33310091 DOI: 10.1016/j.ijbiomac.2020.12.062
    Leptospirosis is a potentially fatal zoonosis that is caused by spirochete Leptospira. The signs and symptoms of leptospirosis are usually varied, allowing it to be mistaken for other causes of acute febrile syndromes. Thus, early diagnosis and identification of a specific agent in clinical samples is crucial for effective treatment. This study was aimed to develop specific monoclonal antibodies against LipL21 antigen for future use in leptospirosis rapid and accurate immunoassay. A recombinant LipL21 (rLipL21) antigen was optimized for expression and evaluated for immunogenicity. Then, a naïve phage antibody library was utilized to identify single chain fragment variable (scFv) clones against the rLipL21 antigen. A total of 47 clones were analysed through monoclonal phage ELISA. However, after taking into consideration the background OD405 values, only 4 clones were sent for sequencing to determine human germline sequences. The sequence analysis showed that all 4 clones are identical. The in silico analysis of scFv-lip-1 complex indicated that the charged residues of scFv CDRs are responsible for the recognition with rLipL21 epitopes. The generated monoclonal antibody against rLipL21 will be evaluated as a detection reagent for the diagnosis of human leptospirosis in a future study.
    Matched MeSH terms: Antigens, Bacterial/immunology*
  8. Kazi A, Hisyam Ismail CMK, Anthony AA, Chuah C, Leow CH, Lim BH, et al.
    Infect Genet Evol, 2020 06;80:104176.
    PMID: 31923724 DOI: 10.1016/j.meegid.2020.104176
    Shigellosis is one of the most common diseases found in the developing countries, especially those countries that are prone flood. The causative agent for this disease is the Shigella species. This organism is one of the third most common enteropathogens responsible for childhood diarrhea. Since Shigella can survive gastric acidity and is an intracellular pathogen, it becomes difficult to treat. Also, uncontrolled use of antibiotics has led to development of resistant strains which poses a threat to public health. Therefore, there is a need for long term control of Shigella infection which can be achieved by designing a proper and effective vaccine. In this study, emphasis was made on designing a candidate that could elicit both B-cell and T-cell immune response. Hence B- and T-cell epitopes of outer membrane channel protein (OM) and putative lipoprotein (PL) from S. flexneri 2a were computationally predicted using immunoinformatics approach and a chimeric construct (chimeric-OP) containing the immunogenic epitopes selected from OM and PL was designed, cloned and expressed in E. coli system. The immunogenicity of the recombinant chimeric-OP was assessed using Shigella antigen infected rabbit antibody. The result showed that the chimeric-OP was a synthetic peptide candidate suitable for the development of vaccine and immunodiagnostics against Shigella infection.
    Matched MeSH terms: Antigens, Bacterial/immunology*
  9. Mustafa AD, Kalyanasundram J, Sabidi S, Song AA, Abdullah M, Abdul Rahim R, et al.
    BMC Biotechnol, 2018 10 11;18(1):63.
    PMID: 30309359 DOI: 10.1186/s12896-018-0461-y
    BACKGROUND: Tuberculosis is one of the most common and deadliest infectious diseases worldwide affecting almost a third of the world's population. Although this disease is being prevented and controlled by the Bacille Calmette Guérin (BCG) vaccine, the protective efficacy is highly variable and substandard (0-80%) in adults. Therefore, novel and effective tuberculosis vaccine that can overcome the limitations from BCG vaccine need to be developed.

    RESULTS: A novel approach of utilizing an in-trans protein surface display system of Lactobacillus plantarum carrying and displaying combination of Mycobacterium tuberculosis subunit epitope antigens (Ag85B, CFP-10, ESAT-6, Rv0475 and Rv2031c) fused with LysM anchor motif designated as ACERL was constructed, cloned and expressed in Esherichia coli Rossetta expression host. Subsequently the binding capability of ACERL to the cell wall of L. plantarum was examined via the immunofluorescence microscopy and whole cell ELISA where successful attachment and consistent stability of cell wall binding up to 4 days was determined. The immunization of the developed vaccine of L. plantarum surface displaying ACERL (Lp ACERL) via the oral route was studied in mice for its immunogenicity effects. Lp ACERL immunization was able to invoke significant immune responses that favor the Th1 type cytokine response of IFN-γ, IL-12 and IL-2 as indicated by the outcome from the cytokine profiling of spleen, lung, gastrointestinal tract (GIT), and the re-stimulation of the splenocytes from the immunized mice. Co-administration of an adjuvant consisting of Lactococcus lactis secreting mouse IL-12 (LcIL-12) with Lp ACERL was also investigated. It was shown that the addition of LcIL-12 was able to further generate significant Th1 type cytokines immune responses, similar or better than that of Lp ACERL alone which can be observed from the cytokine profiling of the immunized mice's spleen, lung and GIT.

    CONCLUSIONS: This study represents a proof of concept in the development of L. plantarum as a carrier for a non-genetically modified organism (GMO) tuberculosis vaccine, which may be the strategy in the future for tuberculosis vaccine development.

    Matched MeSH terms: Antigens, Bacterial/immunology
  10. Ghasemzadeh-Moghaddam H, van Wamel W, van Belkum A, Hamat RA, Tavakol M, Neela VK
    Eur J Clin Microbiol Infect Dis, 2018 Feb;37(2):255-263.
    PMID: 29103153 DOI: 10.1007/s10096-017-3124-3
    The humoral immune responses against 46 different staphylococcal antigens in 27 bacteremia patients infected by clonally related methicillin-resistant Staphylococcus aureus (MRSA) strains of a single sequence type (ST) 239 were investigated. A group of non-infected patients (n = 31) hospitalized for different reasons served as controls. All strains were confirmed as ST 239 by S. aureus and mecA-specific PCR, spa, and multi-locus sequence typing (MLST). In each bacteremia patient, a unique pattern of S. aureus antigen-specific immune responses after infection was observed. Antibody levels among bacteremia patients were significantly higher than controls for HlgB (P = 0.001), LukD (P = 0.009), LukF (P = 0.0001), SEA (P = 0.0001), SEB (P = 0.011), SEC (P = 0.010), SEQ (P = 0.049), IsaA (P = 0.043), IsdA (P = 0.038), IsdH (P = 0.01), SdrD (P = 0.001), SdrE (P = 0.046), EsxA (P = 0.0001), and SA0104 (P = 0.0001). On the other hand, the antibody levels were significantly higher among controls for SSL3 (P = 0.009), SSL9 (P = 0.002), and SSL10 (P = 0.007) when the IgG level on the day of infection was compared with that measured on the day of admission. Diversity was observed in the immune response against the antigens. However, a set of antigens (IsaA, IsdA, IsdH, SdrD, and HlgB) triggered a similar type of immune response in different individuals. We suggest that these antigens could be considered when developing a multi-component (passive) vaccine. SEA and/or its specific antibodies seem to play a critical role during ST239 MRSA bacteremia and SEA-targeted therapy may be a strategy to be considered.
    Matched MeSH terms: Antigens, Bacterial/immunology*
  11. Lawan A, Jesse FFA, Idris UH, Odhah MN, Arsalan M, Muhammad NA, et al.
    Microb Pathog, 2018 Apr;117:175-183.
    PMID: 29471137 DOI: 10.1016/j.micpath.2018.02.039
    Innumerable Escherichia coli of animal origin are identified, which are of economic significance, likewise, cattle, sheep and goats are the carrier of enterohaemorrhagic E. coli, which are less pathogenic, and can spread to people by way of direct contact and through the contamination of foodstuff or portable drinking water, causing serious illness. The immunization of ruminants has been carried out for ages and is largely acknowledged as the most economical and maintainable process of monitoring E. coli infection in ruminants. Yet, only a limited number of E. coli vaccines are obtainable. Mucosal surfaces are the most important ingress for E. coli and thus mucosal immune responses function as the primary means of fortification. Largely contemporary vaccination processes are done by parenteral administration and merely limited number of E. coli vaccines are inoculated via mucosal itinerary, due to its decreased efficacy. Nevertheless, aiming at maximal mucosal partitions to stimulate defensive immunity at both mucosal compartments and systemic site epitomises a prodigious task. Enormous determinations are involved in order to improve on novel mucosal E. coli vaccines candidate by choosing apposite antigens with potent immunogenicity, manipulating novel mucosal itineraries of inoculation and choosing immune-inducing adjuvants. The target of E. coli mucosal vaccines is to stimulate a comprehensive, effective and defensive immunity by specifically counteracting the antibodies at mucosal linings and by the stimulation of cellular immunity. Furthermore, effective E. coli mucosal vaccine would make vaccination measures stress-free and appropriate for large number of inoculation. On account of contemporary advancement in proteomics, metagenomics, metabolomics and transcriptomics research, a comprehensive appraisal of the immeasurable genes and proteins that were divulged by a bacterium is now in easy reach. Moreover, there exist marvellous prospects in this bourgeoning technologies in comprehending the host bacteria affiliation. Accordingly, the flourishing knowledge could massively guarantee to the progression of immunogenic vaccines against E. coli infections in both humans and animals. This review highlight and expounds on the current prominence of mucosal and systemic immunogenic vaccines for the prevention of E. coli infections in ruminants.
    Matched MeSH terms: Antigens, Bacterial/immunology
  12. Khalilpour A, Santhanam A, Wei LC, Saadatnia G, Velusamy N, Osman S, et al.
    Asian Pac J Cancer Prev, 2013;14(3):1635-42.
    PMID: 23679248
    Helicobacter pylori antigen was prepared from an isolate from a patient with a duodenal ulcer. Serum samples were obtained from culture-positive H. pylori infected patients with duodenal ulcers, gastric ulcers and gastritis (n=30). As controls, three kinds of sera without detectable H. pylori IgG antibodies were used: 30 from healthy individuals without history of gastric disorders, 30 from patients who were seen in the endoscopy clinic but were H. pylori culture negative and 30 from people with other diseases. OFF-GEL electrophoresis, SDS-PAGE and Western blots of individual serum samples were used to identify protein bands with good sensitivity and specificity when probed with the above sera and HRP-conjugated anti-human IgG. Four H. pylori protein bands showed good (≥ 70%) sensitivity and high specificity (98-100%) towards anti-Helicobacter IgG antibody in culture- positive patients sera and control sera, respectively. The identities of the antigenic proteins were elucidated by mass spectrometry. The relative molecular weights and the identities of the proteins, based on MALDI TOF/ TOF, were as follows: CagI (25 kDa), urease G accessory protein (25 kDa), UreB (63 kDa) and proline/pyrroline- 5-carboxylate dehydrogenase (118 KDa). These identified proteins, singly and/or in combinations, may be useful for diagnosis of H. pylori infection in patients.
    Matched MeSH terms: Antigens, Bacterial/immunology*
  13. Engelhardt KR, Gertz ME, Keles S, Schäffer AA, Sigmund EC, Glocker C, et al.
    J Allergy Clin Immunol, 2015 Aug;136(2):402-12.
    PMID: 25724123 DOI: 10.1016/j.jaci.2014.12.1945
    BACKGROUND: Mutations in dedicator of cytokinesis 8 (DOCK8) cause a combined immunodeficiency (CID) also classified as autosomal recessive (AR) hyper-IgE syndrome (HIES). Recognizing patients with CID/HIES is of clinical importance because of the difference in prognosis and management.

    OBJECTIVES: We sought to define the clinical features that distinguish DOCK8 deficiency from other forms of HIES and CIDs, study the mutational spectrum of DOCK8 deficiency, and report on the frequency of specific clinical findings.

    METHODS: Eighty-two patients from 60 families with CID and the phenotype of AR-HIES with (64 patients) and without (18 patients) DOCK8 mutations were studied. Support vector machines were used to compare clinical data from 35 patients with DOCK8 deficiency with those from 10 patients with AR-HIES without a DOCK8 mutation and 64 patients with signal transducer and activator of transcription 3 (STAT3) mutations.

    RESULTS: DOCK8-deficient patients had median IgE levels of 5201 IU, high eosinophil levels of usually at least 800/μL (92% of patients), and low IgM levels (62%). About 20% of patients were lymphopenic, mainly because of low CD4(+) and CD8(+) T-cell counts. Fewer than half of the patients tested produced normal specific antibody responses to recall antigens. Bacterial (84%), viral (78%), and fungal (70%) infections were frequently observed. Skin abscesses (60%) and allergies (73%) were common clinical problems. In contrast to STAT3 deficiency, there were few pneumatoceles, bone fractures, and teething problems. Mortality was high (34%). A combination of 5 clinical features was helpful in distinguishing patients with DOCK8 mutations from those with STAT3 mutations.

    CONCLUSIONS: DOCK8 deficiency is likely in patients with severe viral infections, allergies, and/or low IgM levels who have a diagnosis of HIES plus hypereosinophilia and upper respiratory tract infections in the absence of parenchymal lung abnormalities, retained primary teeth, and minimal trauma fractures.

    Matched MeSH terms: Antigens, Bacterial/immunology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links