Displaying publications 41 - 60 of 412 in total

Abstract:
Sort:
  1. Jung YH, Kim S, Yang TH, Lee HJ, Seung D, Park YC, et al.
    Bioprocess Biosyst Eng, 2012 Nov;35(9):1497-503.
    PMID: 22644062 DOI: 10.1007/s00449-012-0739-8
    Oil palm fronds are the most abundant lignocellulosic biomass in Malaysia. In this study, fronds were tested as the potential renewable biomass for ethanol production. The soaking in aqueous ammonia pretreatment was applied, and the fermentability of pretreated fronds was evaluated using simultaneous saccharification and fermentation. The optimal pretreatment conditions were 7 % (w/w) ammonia, 80 °C, 20 h of pretreatment, and 1:12 S/L ratio, where the enzymatic digestibility was 41.4 % with cellulase of 60 FPU/g-glucan. When increasing the cellulase loading in the hydrolysis of pretreated fronds, the enzymatic digestibility increased until the enzyme loading reached 60 FPU/g-glucan. With 3 % glucan loading in the SSF of pretreated fronds, the ethanol concentration and yield based on the theoretical maximum after 12 and 48 h of the SSF were 7.5 and 9.7 g/L and 43.8 and 56.8 %, respectively. The ethanol productivities found at 12 and 24 h from pretreated fronds were 0.62 and 0.36 g/L/h, respectively.
    Matched MeSH terms: Arecaceae/chemistry*
  2. Zakaria MR, Norrrahim MN, Hirata S, Hassan MA
    Bioresour Technol, 2015 Apr;181:263-9.
    PMID: 25659104 DOI: 10.1016/j.biortech.2015.01.072
    Eco-friendly pretreatment methods for lignocellulosic biomass are being developed as alternatives to chemical based methods. Superheated steam (SHS), hot compressed water (HCW) and wet disk milling (WDM) were used individually and with combination to partially remove hemicellulose and alter the lignin composition of recalcitrant structure of oil palm mesocarp fiber (OPMF). The efficiency of the pretreatment methods was evaluated based on the chemical compositions altered, SEM analysis, power consumption and degree of enzymatic digestibility. Hemicellulose removal (94.8%) was more pronounced under HCW compared to SHS, due to maximal contact of water and production of acetic acid which enhanced further degradation of hemicellulose. Subsequent treatment with WDM resulted in defibrillation of OPMF and expansion of the specific surface area thus increasing the conversion of cellulose to glucose. The highest glucose yield was 98.1% (g/g-substrate) when pretreated with HCW (200 °C, 20 min) and WDM which only consumed 9.6 MJ/kg of OPMF.
    Matched MeSH terms: Arecaceae/ultrastructure; Arecaceae/chemistry
  3. Zakaria MR, Hirata S, Hassan MA
    Bioresour Technol, 2015 Jan;176:142-8.
    PMID: 25460995 DOI: 10.1016/j.biortech.2014.11.027
    The present works investigate hydrothermal pretreatment of oil palm empty fruit bunch and oil palm frond fiber in a batch tube reactor system with temperature and time range from 170 to 250°C and 10 to 20min, respectively. The behavior of soluble sugars, acids, furans, and phenols dramatically changed over treatment severities as determined by HPLC. The cellulose-rich treated solids were analyzed by SEM, WAXD, and BET surface area. Enzymatic hydrolysis was performed from both pretreated slurries and washed solid, and data obtained suggested that tannic acid derived from lignin degradation was a potential cellulase inhibitor. Both partial removal of hemicellulose and migration of lignin during hydrothermal pretreatment caused structural changes on the cellulose-hemicellulose-lignin matrix, resulting in the opening and expansion of specific surface area and pore volume. The current results provided important factors that maximize conversion of cellulose to glucose from oil palm biomass by hydrothermal process.
    Matched MeSH terms: Arecaceae/metabolism; Arecaceae/chemistry*
  4. Samsudin MD, Mat Don M
    Bioresour Technol, 2015 Jan;175:417-23.
    PMID: 25459850 DOI: 10.1016/j.biortech.2014.10.116
    Oil palm trunk (OPT) sap was utilized for growth and bioethanol production by Saccharomycescerevisiae with addition of palm oil mill effluent (POME) as nutrients supplier. Maximum yield (YP/S) was attained at 0.464g bioethanol/g glucose presence in the OPT sap-POME-based media. However, OPT sap and POME are heterogeneous in properties and fermentation performance might change if it is repeated. Contribution of parametric uncertainty analysis on bioethanol fermentation performance was then assessed using Monte Carlo simulation (stochastic variable) to determine probability distributions due to fluctuation and variation of kinetic model parameters. Results showed that based on 100,000 samples tested, the yield (YP/S) ranged 0.423-0.501g/g. Sensitivity analysis was also done to evaluate the impact of each kinetic parameter on the fermentation performance. It is found that bioethanol fermentation highly depend on growth of the tested yeast.
    Matched MeSH terms: Arecaceae/metabolism*; Arecaceae/chemistry
  5. Cui X, Zhao X, Zeng J, Loh SK, Choo YM, Liu D
    Bioresour Technol, 2014 Aug;166:584-91.
    PMID: 24956030 DOI: 10.1016/j.biortech.2014.05.102
    Oil palm empty fruit bunch (EFB) was pretreated by Formiline process to overcome biomass recalcitrance and obtain hemicellulosic syrup and lignin. Higher formic acid concentration led to more lignin removal but also higher degree of cellulose formylation. Cellulose digestibility could be well recovered after deformylation with a small amount of lime. After digested by enzyme loading of 15 FPU+10 CBU/g solid for 48 h, the polysaccharide conversion could be over 90%. Simultaneous saccharification and fermentation (SSF) results demonstrated that ethanol concentration reached 83.6 g/L with approximate 85% of theoretic yield when performed at an initial dry solid consistency of 20%. A mass balance showed that via Formiline pretreatment 0.166 kg of ethanol could be produced from 1 kg of dry EFB with co-production of 0.14 kg of high-purity lignin and 5.26 kg hemicellulosic syrup containing 2.8% xylose. Formiline pretreatment thus can be employed as an entry for biorefining of EFB.
    Matched MeSH terms: Arecaceae/chemistry*
  6. Talib AT, Mokhtar MN, Baharuddin AS, Sulaiman A
    Bioresour Technol, 2014 Oct;169:428-38.
    PMID: 25079208 DOI: 10.1016/j.biortech.2014.07.033
    The effect of different aeration rates on the organic matter (OM) degradation during the active phase of oil palm empty fruit bunch (EFB)-rabbit manure co-composting process under constant forced-aeration system has been studied. Four different aeration rates, 0.13 L min(-1) kg(DM)(-1),0.26 L min(-1) kg(DM)(-1),0.49 L min(-1) kg(DM)(-1) and 0.74 L min(-1) kg(DM)(-1) were applied. 0.26 L min(-1) kg(DM)(-1) provided enough oxygen level (10%) for the rest of composting period, showing 40.5% of OM reduction that is better than other aeration rates. A dynamic mathematical model describing OM degradation, based on the ratio between OM content and initial OM content with correction functions of moisture content, free air space, oxygen and temperature has been proposed.
    Matched MeSH terms: Arecaceae/chemistry*
  7. Zakaria MR, Hirata S, Hassan MA
    Bioresour Technol, 2014 Oct;169:236-43.
    PMID: 25058299 DOI: 10.1016/j.biortech.2014.06.095
    Hydrothermal pretreatment of oil palm mesocarp fiber was conducted in tube reactor at treatment severity ranges of log Ro = 3.66-4.83 and partial removal of hemicellulose with migration of lignin was obtained. Concerning maximal recovery of glucose and xylose, 1.5% NaOH was impregnated in the system and subsequent ball milling treatment was employed to improve the conversion yield. The effects of combined hydrothermal and ball milling pretreatments were evaluated by chemical composition changes by using FT-IR, WAXD and morphological alterations by SEM. The successful of pretreatments were assessed by the degree of enzymatic digestibility of treated samples. The highest xylose and glucose yields obtained were 63.2% and 97.3% respectively at cellulase loadings of 10 FPU/g-substrate which is the highest conversion from OPMF ever reported.
    Matched MeSH terms: Arecaceae/drug effects; Arecaceae/chemistry*
  8. Ezebor F, Khairuddean M, Abdullah AZ, Boey PL
    Bioresour Technol, 2014 Apr;157:254-62.
    PMID: 24561631 DOI: 10.1016/j.biortech.2014.01.110
    The use of pseudo-infinite methanol in increasing the rate of esterification and transesterification reactions was studied using oil palm trunk (OPT) and sugarcane bagasse (SCB) derived solid acid catalysts. The catalysts were prepared by incomplete carbonisation at 400°C for 8h, followed by sulfonation at 150°C for 15h and characterised using TGA/DTA, XRD, FT-IR, SEM-EDS, EA and titrimetric determinations of acid sites. Under optimal reaction conditions, the process demonstrated rapid esterification of palmitic acid, with FAME yields of 93% and 94% in 45min for OPT and SCB catalysts, respectively. With the process, moisture levels up to 16.7% accelerated the conversion of low FFA oils by sulfonated carbon catalysts, through moisture-induced violent bumping. Moisture assisted transesterification of palm olein containing 1.78% FFA and 8.33% added water gave FAME yield of 90% in 10h, which was two folds over neat oil.
    Matched MeSH terms: Arecaceae/chemistry*
  9. Zhang Y, Sun W, Wang H, Geng A
    Bioresour Technol, 2013 Nov;147:307-314.
    PMID: 24001560 DOI: 10.1016/j.biortech.2013.08.029
    Oil palm empty fruit bunch (OPEFB), contains abundant cellulose and hemicelluloses and can be used as a renewable resource for fuel and chemical production. This study, as the first attempt, aims to convert OPEFB derived sugars to polyhydroxybutyrate (PHB). OPEFB collected from a Malaysia palm oil refinery plant was chemically pretreated and enzymatically hydrolyzed by an in-house prepared cellulase cocktail. The PHB producer, Bacillus megaterium R11, was isolated in Singapore and could accumulate PHB up to 51.3% of its cell dry weight (CDW) from both glucose and xylose. Tryptone was identified as its best nitrogen source. PHB content and production reached 58.5% and 9.32 g/L, respectively, for an overall OPEFB sugar concentration of 45 g/L. These respectively reached 51.6% and 12.48 g/L for OPEFB hydrolysate containing 60 g/L sugar with a productivity of 0.260 g/L/h.
    Matched MeSH terms: Arecaceae/metabolism*
  10. Salema AA, Ani FN
    Bioresour Technol, 2012 Dec;125:102-7.
    PMID: 23026320 DOI: 10.1016/j.biortech.2012.08.002
    Oil palm empty fruit bunch pellets were subjected to pyrolysis in a multimode microwave (MW) system (1 kW and 2.45 GHz frequency) with and without the MW absorber, activated carbon. The ratio of biomass to MW absorber not only affected the temperature profiles of the EFB but also pyrolysis products such as bio-oil, char, and gas. The highest bio-oil yield of about 21 wt.% was obtained with 25% MW absorber. The bio-oil consisted of phenolic compounds of about 60-70 area% as detected by GC-MS and confirmed by FT-IR analysis. Ball lightning (plasma arc) occurred due to residual palm oil in the EFB biomass without using an MW absorber. The bio-char can be utilized as potential alternative fuel because of its heating value (25 MJ/kg).
    Matched MeSH terms: Arecaceae/radiation effects*
  11. Mousavi S, Ibrahim S, Aroua MK
    Bioresour Technol, 2012 Dec;125:256-66.
    PMID: 23026342 DOI: 10.1016/j.biortech.2012.08.075
    In this study, a twin-chamber upflow bio-electrochemical reactor packed with palm shell granular activated carbon as biocarrier and third electrode was used for sequential nitrification and denitrification of nitrogen-rich wastewater under different operating conditions. The experiments were performed at a constant pH value for the denitrification compartment. The effect of variables, namely, electric current (I) and hydraulic retention time (HRT), on the pH was considered in the nitrification chamber. The response surface methodology was used based on three levels to develop empirical models for the study on the effects of HRT and current values as independent operating variables on NH(4)(+)-N removal. The results showed that ammonium was reduced within the function of an extensive operational range of electric intensity (20-50 mA) and HRT (6-24h). The optimum condition for ammonium oxidation (90%) was determined with an I of 32 mA and HRT of 19.2h.
    Matched MeSH terms: Arecaceae/chemistry*
  12. Yaakob Z, Sukarman IS, Narayanan B, Abdullah SR, Ismail M
    Bioresour Technol, 2012 Jan;104:695-700.
    PMID: 22113069 DOI: 10.1016/j.biortech.2011.10.058
    Transesterification reaction of Jatropha curcas oil with methanol was carried out in the presence of ash generated from Palm empty fruit bunch (EFB) in a heterogeneous catalyzed process. The ash was doped with KOH by impregnation to achieve a potassium level of 20 wt.%. Under optimum conditions for the EFB-catalyzed (65 °C, oil/methanol ratio of 15, 90 min, 20 wt.% EFB ash catalyst) and the KOH-EFB-catalyzed reactions (65 °C, oil/methanol ratio of 15, 45 min, 15 wt.% of KOH doped EFB ash), biodiesel (>98%) with specifications higher than those stipulated by European biodiesel quality standard EN 14214 was obtained.
    Matched MeSH terms: Arecaceae/chemistry*
  13. Sabiha-Hanim S, Noor MA, Rosma A
    Bioresour Technol, 2011 Jan;102(2):1234-9.
    PMID: 20797853 DOI: 10.1016/j.biortech.2010.08.017
    Oil palm (Elaeis guineensis Jacq.) is one of the most important commercial crops for the production of palm oil, which generates 10.88 tons of oil palm fronds per hectare of plantation as a by-product. In this study, oil palm frond fibres were subjected to an autohydrolysis treatment using an autoclave, operated at 121 °C for 20-80 min, to facilitate the separation of hemicelluloses. The hemicellulose-rich solution (autohydrolysate) was subjected to further hydrolysis with 4-16 U of mixed Trichoderma viride endo-(1,4)-β-xylanases (EC 3.2.1.8) per 100 mg of autohydrolysate. Autoclaving of palm fronds at 121°C for 60 min (a severity factor of 2.40) recovered 75% of the solid residue, containing 57.9% cellulose and 18% Klason lignin, and an autohydrolysate containing 14.94% hemicellulose, with a fractionation efficiency of 49.20%. Subsequent enzymatic hydrolysis of the autohydrolysate with 8 U of endoxylanase at 40 °C for 24 h produced a solution containing 17.5% xylooligosaccharides and 25.6% xylose. The results clearly indicate the potential utilization of oil palm frond, an abundantly available lignocellulosic biomass for the production of xylose and xylooligosaccharides which can serve as functional food ingredients.
    Matched MeSH terms: Arecaceae/metabolism*
  14. Jusoh A, Hartini WJ, Ali N, Endut A
    Bioresour Technol, 2011 May;102(9):5312-8.
    PMID: 21232934 DOI: 10.1016/j.biortech.2010.12.074
    In this batch study, the adsorption of malathion by using granular activated carbon with different parameters due to the particle size, dosage of carbons, as well as the initial concentration of malathion was investigated. Batch tests were carried out to determine the potential and the effectiveness of granular activated carbon (GAC) in removal of pesticide in agricultural run off. The granular activated carbon; coconut shell and palm shells were used and analyzed as the adsorbent material. The Langmuir and Freundlich adsorption isotherms models were applied to describe the characteristics of adsorption behavior. Equilibrium data fitted well with the Langmuir model and Freundlich model with maximum adsorption capacity of 909.1mg/g. The results indicate that the GAC could be used to effectively adsorb pesticide (malathion) from agricultural runoff.
    Matched MeSH terms: Arecaceae/chemistry
  15. Fan SP, Zakaria S, Chia CH, Jamaluddin F, Nabihah S, Liew TK, et al.
    Bioresour Technol, 2011 Feb;102(3):3521-6.
    PMID: 21123058 DOI: 10.1016/j.biortech.2010.11.046
    Solvolysis of oil palm empty fruit bunches (EFB) fibres using different solvents (acetone, ethylene glycol (EG), ethanol, water and toluene) were carried out using an autoclave at 275°C for 60 min. The solvent efficiency in term of conversion yield was found to be: EG>water>ethanol>acetone>toluene. The liquid products and residue obtained were analyzed using Fourier transform infrared spectroscopy (FTIR) and gas chromatography/mass selectivity. The obtained results showed that the chemical properties of the oil product were significantly affected by the type of solvent used for the solvolysis process. The higher heating value (HHV) of oil products obtained using ethanol is ∼29.42 MJ/kg, which is the highest among the oil products produced using different solvents. Water, ethanol and toluene yield major phenolic compounds. While EG favors the formation of alcohol compounds and acetone yields ketone and aldehyde compounds.
    Matched MeSH terms: Arecaceae/chemistry*
  16. Yunus R, Salleh SF, Abdullah N, Biak DR
    Bioresour Technol, 2010 Dec;101(24):9792-6.
    PMID: 20719502 DOI: 10.1016/j.biortech.2010.07.074
    Various pre-treatment techniques change the physical and chemical structure of the lignocellulosic biomass and improve hydrolysis rates. The effect of ultrasonic pre-treatment on oil palm empty fruit bunch (OPEFB) fibre prior to acid hydrolysis has been evaluated. The main objective of this study was to determine if ultrasonic pre-treatment could function as a pre-treatment method for the acid hydrolysis of OPEFB fibre at a low temperature and pressure. Hydrolysis at a low temperature was studied using 2% sulphuric acid; 1:25 solid liquid ratio and 100 degrees C operating temperature. A maximum xylose yield of 58% was achieved when the OPEFB fibre was ultrasonicated at 90% amplitude for 45min. In the absence of ultrasonic pre-treatment only 22% of xylose was obtained. However, no substantial increase of xylose formation was observed for acid hydrolysis at higher temperatures of 120 and 140 degrees C on ultrasonicated OPEFB fibre. The samples were then analysed using a scanning electron microscope (SEM) to describe the morphological changes of the OPEFB fibre. The SEM observations show interesting morphological changes within the OPEFB fibre for different acid hydrolysis conditions.
    Matched MeSH terms: Arecaceae/drug effects; Arecaceae/chemistry*
  17. Amouzgar P, Khalil HP, Salamatinia B, Abdullah AZ, Issam AM
    Bioresour Technol, 2010 Nov;101(21):8396-401.
    PMID: 20639118 DOI: 10.1016/j.biortech.2010.05.061
    In this study optimization of drying oil palm trunk core lumber (OPTCL) biomass using microwave radiation was reported. Optimizing of the drying conditions using microwave, avoid burning, shrinkage and increasing the permeability of OPT was aimed to develop a new value added material. A set of experiments was designed by central composite design using response surface methodology (RSM) to statistically evaluate the findings. Three independent process variables including time (2-10 min), sample weight (300-1000 g) and input power (660-3300 W) were studied under the given conditions designed by Design Expert software. The results showed the effectiveness of microwave drying in reducing the time and better removal of moisture as compared to that of oven drying with no significant changes. Employing optimum conditions at 6.89 min of time with a microwave power set at 4 for a sample of 1000 g, predicting 14.62% of moisture content.
    Matched MeSH terms: Arecaceae/anatomy & histology*
  18. Salim YS, Abdullah AA, Nasri CS, Ibrahim MN
    Bioresour Technol, 2011 Feb;102(3):3626-8.
    PMID: 21115240 DOI: 10.1016/j.biortech.2010.11.020
    Poly(3-hydroxybutyrate-co-38 mol%-3-hydroxyvalerate) [P(3HB-co-38mol%-3HV)] was produced by Cupriavidus sp. USMAA2-4 in the presence of oleic acid and 1-pentanol. Due to enormous production of empty fruit bunch (EFB) in the oil palm plantation and high production cost of P(3HB-co-3HV), oil palm EFB fibers were used for biocomposites preparation. In this study, maleic anhydride (MA) and benzoyl peroxide (DBPO) were used to improve the miscibility between P(3HB-co-3HV) and EFB fibers. Introduction of MA into P(3HB-co-3HV) backbone reduced the molecular weight and improved the thermal stability of P(3HB-co-3HV). Thermal stability of P(3HB-co-3HV)/EFB composites was shown to be comparable to that of commercial packaging product. Composites with 35% EFB fibers content have the highest tensile strength compared to 30% and 40%. P(3HB-co-3HV)/EFB blends showed less chemicals leached compared to commercial packaging.
    Matched MeSH terms: Arecaceae/chemistry*
  19. Lahijani P, Zainal ZA
    Bioresour Technol, 2011 Jan;102(2):2068-76.
    PMID: 20980143 DOI: 10.1016/j.biortech.2010.09.101
    Gasification of palm empty fruit bunch (EFB) was investigated in a pilot-scale air-blown fluidized bed. The effect of bed temperature (650-1050 °C) on gasification performance was studied. To explore the potential of EFB, the gasification results were compared to that of sawdust. Results showed that maximum heating values (HHV) of 5.37 and 5.88 (MJ/Nm3), dry gas yield of 2.04 and 2.0 (Nm3/kg), carbon conversion of 93% and 85 % and cold gas efficiency of 72% and 71 % were obtained for EFB and sawdust at the temperature of 1050 °C and ER of 0.25. However, it was realized that agglomeration was the major issue in EFB gasification at high temperatures. To prevent the bed agglomeration, EFB gasification was performed at temperature of 770±20 °C while the ER was varied from 0.17 to 0.32. Maximum HHV of 4.53 was obtained at ER of 0.21 where no agglomeration was observed.
    Matched MeSH terms: Arecaceae/chemistry*
  20. Mazaheri H, Lee KT, Bhatia S, Mohamed AR
    Bioresour Technol, 2010 Dec;101(23):9335-41.
    PMID: 20656481 DOI: 10.1016/j.biortech.2010.07.004
    Thermal decomposition of oil palm fruit press fiber (FPF) into a liquid product (LP) was achieved using subcritical water treatment in the presence of sodium hydroxide in a high pressure batch reactor. This study uses experimental design and process optimisation tools to maximise the LP yield using response surface methodology (RSM) with central composite rotatable design (CCRD). The independent variables were temperature, residence time, particle size, specimen loading, and additive loading. The mathematical model that was developed fit the experimental results well for all of the response variables that were studied. The optimal conditions were found to be a temperature of 551 K, a residence time of 40 min, a particle size of 710-1000 microm, a specimen loading of 5 g, and a additive loading of 9 wt.% to achieve a LP yield of 76.16%.
    Matched MeSH terms: Arecaceae/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links