Displaying publications 41 - 60 of 153 in total

Abstract:
Sort:
  1. Kamaruzman NI, Aziz NA, Poh CL, Chowdhury EH
    Cancers (Basel), 2019 May 06;11(5).
    PMID: 31064156 DOI: 10.3390/cancers11050632
    Overexpression of oncogenes and cross-talks of the oncoproteins-regulated signaling cascades with other intracellular pathways in breast cancer could lead to massive abnormal signaling with the consequence of tumorigenesis. The ability to identify the genes having vital roles in cancer development would give a promising therapeutics strategy in combating the disease. Genetic manipulations through siRNAs targeting the complementary sequence of the oncogenic mRNA in breast cancer is one of the promising approaches that can be harnessed to develop more efficient treatments for breast cancer. In this review, we highlighted the effects of major signaling pathways stimulated by oncogene products on breast tumorigenesis and discussed the potential therapeutic strategies for targeted delivery of siRNAs with nanoparticles in suppressing the stimulated signaling pathways.
    Matched MeSH terms: Carcinogenesis
  2. Lim DV, Woo WH, Lim JX, Loh XY, Soh HT, Lim SYA, et al.
    Curr Mol Pharmacol, 2024;17(1):e140923221042.
    PMID: 37711005 DOI: 10.2174/1874467217666230914090621
    BACKGROUND: Mutations in the TP53 gene are the most common among genetic alterations in human cancers, resulting in the formation of mutant p53 protein (mutp53). Mutp53 promotes proliferation, migration, invasion, and metastasis in cancer cells. Not only does the initiation of oncogenesis ensue due to mutp53, but resistance towards chemotherapy and radiotherapy in cancer cells also occurs. This review aims to summarise and discuss the oncogenesis of mutant p53 in cancer cells and introduce the various mutant p53 inhibitors currently being evaluated at the pre-clinical and clinical stages. Compounds that induce the wild-type conformation on the targeted p53 missense mutation, restore or enhance the DNA binding of mutant p53, and inhibit cancer cells' growth are highlighted. In addition, the progression and development of the mutant p53 inhibitors in clinical trials are updated.

    CONCLUSION: The progress of developing a cancer treatment that may successfully and efficiently target mutant p53 is on the verge of development. Mutant p53 proteins not only initiate oncogenesis but also cause resistance in cancer cells to certain chemo or radiotherapies, further endorse cancer cell survival and promote migration as well as metastasis of cancerous cells. With this regard, many mutant p53 inhibitors have been developed, some of which are currently being evaluated at the pre-clinical level and have been identified and discussed. To date, APR-246 is the most prominent one that has progressed to the Phase III clinical trial.

    Matched MeSH terms: Carcinogenesis
  3. Hashemi M, Sabouni E, Rahmanian P, Entezari M, Mojtabavi M, Raei B, et al.
    Cell Mol Biol Lett, 2023 Apr 21;28(1):33.
    PMID: 37085753 DOI: 10.1186/s11658-023-00438-9
    Hepatocellular carcinoma (HCC) is considered one of the greatest challenges to human life and is the most common form of liver cancer. Treatment of HCC depends on chemotherapy, radiotherapy, surgery, and immunotherapy, all of which have their own drawbacks, and patients may develop resistance to these therapies due to the aggressive behavior of HCC cells. New and effective therapies for HCC can be developed by targeting molecular signaling pathways. The expression of signal transducer and activator of transcription 3 (STAT3) in human cancer cells changes, and during cancer progression, the expression tends to increase. After induction of STAT3 signaling by growth factors and cytokines, STAT3 is phosphorylated and translocated to the nucleus to regulate cancer progression. The concept of the current review revolves around the expression and phosphorylation status of STAT3 in HCC, and studies show that the expression of STAT3 is high during the progression of HCC. This review addresses the function of STAT3 as an oncogenic factor in HCC, as STAT3 is able to prevent apoptosis and thus promote the progression of HCC. Moreover, STAT3 regulates both survival- and death-inducing autophagy in HCC and promotes cancer metastasis by inducing the epithelial-mesenchymal transition (EMT). In addition, upregulation of STAT3 is associated with the occurrence of chemoresistance and radioresistance in HCC. Specifically, non-protein-coding transcripts regulate STAT3 signaling in HCC, and their inhibition by antitumor agents may affect tumor progression. In this review, all these topics are discussed in detail to provide further insight into the role of STAT3 in tumorigenesis, treatment resistance, and pharmacological regulation of HCC.
    Matched MeSH terms: Carcinogenesis
  4. Chowdhary S, Deka R, Panda K, Kumar R, Solomon AD, Das J, et al.
    Mol Pharm, 2023 Aug 07;20(8):3698-3740.
    PMID: 37486263 DOI: 10.1021/acs.molpharmaceut.2c01080
    Human viral oncogenesis is a complex phenomenon and a major contributor to the global cancer burden. Several recent findings revealed cellular and molecular pathways that promote the development and initiation of malignancy when viruses cause an infection. Even, antiviral treatment has become an approach to eliminate the viral infections and prevent the activation of oncogenesis. Therefore, for a better understanding, the molecular pathogenesis of various oncogenic viruses like, hepatitis virus, human immunodeficiency viral (HIV), human papillomavirus (HPV), herpes simplex virus (HSV), and Epstein-Barr virus (EBV), could be explored, especially, to expand many potent antivirals that may escalate the apoptosis of infected malignant cells while sparing normal and healthy ones. Moreover, contemporary therapies, such as engineered antibodies antiviral agents targeting signaling pathways and cell biomarkers, could inhibit viral oncogenesis. This review elaborates the recent advancements in both natural and synthetic antivirals to control viral oncogenesis. The study also highlights the challenges and future perspectives of using antivirals in viral oncogenesis.
    Matched MeSH terms: Carcinogenesis
  5. Zulpa AK, Barathan M, Iyadorai T, Mariappan V, Vadivelu J, Teh CSJ, et al.
    World J Microbiol Biotechnol, 2023 Oct 06;39(12):333.
    PMID: 37801157 DOI: 10.1007/s11274-023-03767-1
    pks+ Escherichia coli (E. coli) triggers genomic instability in normal colon cells which leads to colorectal cancer (CRC) tumorigenesis. Previously, we reported a significant presentation of pks+ E. coli strains in CRC patients' biopsies as compared to healthy cohorts. In this work, using an in vitro infection model, we further explored the ability of these strains in modulating cell cycle arrest and activation of apoptotic mediators in both primary colon epithelial cells (PCE) and CRC cells (HCT-116). Sixteen strains, of which eight tumours and the matching non-malignant tissues, respectively, from eight pks+ E. coli CRC patients were subjected to BrDU staining and cell cycle analysis via flow cytometry, while a subset of these strains underwent analysis of apoptotic mediators including caspase proteins, cellular reactive oxygen species (cROS) and mitochondrial membrane potential (MMP) via spectrophotometry as well as proinflammatory cytokines via flow cytometry. Data revealed that all strains exerted S-phase cell cycle blockade in both cells and G2/M phase in PCE cells only. Moreover, more significant upregulation of Caspase 9, cROS, proinflammatory cytokines and prominent downregulation of MMP were detected in HCT-116 cells indicating the potential role of pks related bacterial toxin as anticancer agent as compared to PCE cells which undergo cellular senescence leading to cell death without apparent upregulation of apoptotic mediators. These findings suggest the existence of discrepancies underlying the mechanism of action of pks+ E. coli on both cancer and normal cell lines. This work propounds the rationale to further understand the mechanism underlying pks+ E. coli-mediated CRC tumorigenesis and cancer killing.
    Matched MeSH terms: Carcinogenesis
  6. Nawi AM, Chin SF, Azhar Shah S, Jamal R
    Iran J Public Health, 2019 Apr;48(4):632-643.
    PMID: 31110973
    Background: Trace elements play a pivotal role in Colorectal Cancer (CRC) inhibition and development process. This systematic review provides the basic comparison of case-control studies focusing on concentration of trace elements between those with CRC and controls.

    Methods: The systematic review searched through two databases of Medline and Cochrane up to 24th June 2017. The search strategy focused on Population, Intervention, Comparison, and Outcomes (PICO). We searched the role of trace elements in cancer and focusing on case-control studies in CRC to obtain an insight into the differences in trace element concentrations between those with and without cancer.

    Results: The serum concentrations of Ca, Cu, Mg, Mn, Se, Si, and Zn were lower in CRC patients but for Co and S the levels were higher in CRC patients. The concentrations of Cd, Cr, Cu, Mg, Mn, Pb, and Zn were increased in patients with metastasis, but not in Se. As for colon tissue specimens, inconsistent levels were reported between studies, notably in Cu, Se, and Zn. No changes were reported for B and Ca levels. Most of the trace elements in the tissue specimens showed higher concentrations of Cr, Fe, K, Mg, P, Rb, S, and Si compared to Br.

    Conclusion: With the growing interest to understand the link between trace elements in carcinogenesis and the possible interactions, multi assessment analysis of a larger cohort of samples is necessary.

    Matched MeSH terms: Carcinogenesis
  7. Akhir MKAM, Choy CS, Abdullah MA, Ghani FA, Veerakumarasivam A, Hussin H
    Malays J Med Sci, 2020 Feb;27(1):37-45.
    PMID: 32158343 MyJurnal DOI: 10.21315/mjms2020.27.1.4
    Introduction: Lin-11, Isl-1 and Mec-3 domains (LIM) homeobox genes are among the most important sub-families of homeobox genes. These genes are thought to play an important role in cancer. In this study, the protein expression of these genes was examined in urothelial carcinoma of the bladder. The expression pattern of Islet-1 (ISL1) and LIM homeobox 5 (LHX5) across different cancer stages and grades, as well as the association between the protein expression of these genes and patient demographics and clinicopathological features, were examined.

    Methods: A total of 100 formalin-fixed paraffin-embedded urothelial carcinoma tissues were selected from the Department of Pathology, Hospital Kuala Lumpur and the protein expression of ISL1 and LHX5 was determined using immunohistochemistry.

    Results: Positive expression of ISL1 and LHX5 was detected in 94% and 98% of the samples, respectively. There were no distinct LHX5 expression patterns associated with different cancer stages, but the proportion of high-expressing tumours was higher in high-grade tumours. In addition, there was a significant association between the expression of LHX5 and tumour grade. The proportion of tumours expressing high levels of ISL1 was found to be highest in later stage tumours.

    Conclusion: The high percentage of tumours expressing both these genes suggests that ISL1 and LHX5 play an important role in bladder tumourigenesis across multiple stages.

    Matched MeSH terms: Carcinogenesis
  8. Tan SC, Ankathil R
    Tumour Biol., 2015 Sep;36(9):6633-44.
    PMID: 26242271 DOI: 10.1007/s13277-015-3868-2
    Cervical cancer is a common malignancy which poses a significant health burden among women, especially those living in the developing countries. Although human papillomavirus (HPV) infection has been unequivocally implicated in the etiopathogenesis of the cancer, it alone is not adequate to contribute to the malignant transformation of cervical cells. Most HPV infections regress spontaneously, and only a small proportion of women have persistent infections which eventually lead to malignancy. This suggests that interplays between HPV infection and other cofactors certainly exist during the process of cervical carcinogenesis, which synergistically contribute to the differential susceptibility of an individual to the malignancy. Undoubtedly, host genetic factors represent a major element involved in such a synergistic interaction, and accumulating evidence suggests that polymorphisms in apoptosis-related genes play an important role in the genetic susceptibility to cervical cancer. This review consolidates the recent literatures on the role of common polymorphisms in apoptosis-related genes in genetic susceptibility to cervical cancer.
    Matched MeSH terms: Carcinogenesis/genetics
  9. Narayanan KB, Ali M, Barclay BJ, Cheng QS, D'Abronzo L, Dornetshuber-Fleiss R, et al.
    Carcinogenesis, 2015 Jun;36 Suppl 1:S89-110.
    PMID: 26106145 DOI: 10.1093/carcin/bgv032
    Cell death is a process of dying within biological cells that are ceasing to function. This process is essential in regulating organism development, tissue homeostasis, and to eliminate cells in the body that are irreparably damaged. In general, dysfunction in normal cellular death is tightly linked to cancer progression. Specifically, the up-regulation of pro-survival factors, including oncogenic factors and antiapoptotic signaling pathways, and the down-regulation of pro-apoptotic factors, including tumor suppressive factors, confers resistance to cell death in tumor cells, which supports the emergence of a fully immortalized cellular phenotype. This review considers the potential relevance of ubiquitous environmental chemical exposures that have been shown to disrupt key pathways and mechanisms associated with this sort of dysfunction. Specifically, bisphenol A, chlorothalonil, dibutyl phthalate, dichlorvos, lindane, linuron, methoxychlor and oxyfluorfen are discussed as prototypical chemical disruptors; as their effects relate to resistance to cell death, as constituents within environmental mixtures and as potential contributors to environmental carcinogenesis.
    Matched MeSH terms: Carcinogenesis/chemically induced*
  10. Langie SA, Koppen G, Desaulniers D, Al-Mulla F, Al-Temaimi R, Amedei A, et al.
    Carcinogenesis, 2015 Jun;36 Suppl 1:S61-88.
    PMID: 26106144 DOI: 10.1093/carcin/bgv031
    Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome's integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus, genome instability can be defined as an enhanced tendency for the genome to acquire mutations; ranging from changes to the nucleotide sequence to chromosomal gain, rearrangements or loss. This review raises the hypothesis that in addition to known human carcinogens, exposure to low dose of other chemicals present in our modern society could contribute to carcinogenesis by indirectly affecting genome stability. The selected chemicals with their mechanisms of action proposed to indirectly contribute to genome instability are: heavy metals (DNA repair, epigenetic modification, DNA damage signaling, telomere length), acrylamide (DNA repair, chromosome segregation), bisphenol A (epigenetic modification, DNA damage signaling, mitochondrial function, chromosome segregation), benomyl (chromosome segregation), quinones (epigenetic modification) and nano-sized particles (epigenetic pathways, mitochondrial function, chromosome segregation, telomere length). The purpose of this review is to describe the crucial aspects of genome instability, to outline the ways in which environmental chemicals can affect this cancer hallmark and to identify candidate chemicals for further study. The overall aim is to make scientists aware of the increasing need to unravel the underlying mechanisms via which chemicals at low doses can induce genome instability and thus promote carcinogenesis.
    Matched MeSH terms: Carcinogenesis/chemically induced*
  11. Hu Z, Brooks SA, Dormoy V, Hsu CW, Hsu HY, Lin LT, et al.
    Carcinogenesis, 2015 Jun;36 Suppl 1:S184-202.
    PMID: 26106137 DOI: 10.1093/carcin/bgv036
    One of the important 'hallmarks' of cancer is angiogenesis, which is the process of formation of new blood vessels that are necessary for tumor expansion, invasion and metastasis. Under normal physiological conditions, angiogenesis is well balanced and controlled by endogenous proangiogenic factors and antiangiogenic factors. However, factors produced by cancer cells, cancer stem cells and other cell types in the tumor stroma can disrupt the balance so that the tumor microenvironment favors tumor angiogenesis. These factors include vascular endothelial growth factor, endothelial tissue factor and other membrane bound receptors that mediate multiple intracellular signaling pathways that contribute to tumor angiogenesis. Though environmental exposures to certain chemicals have been found to initiate and promote tumor development, the role of these exposures (particularly to low doses of multiple substances), is largely unknown in relation to tumor angiogenesis. This review summarizes the evidence of the role of environmental chemical bioactivity and exposure in tumor angiogenesis and carcinogenesis. We identify a number of ubiquitous (prototypical) chemicals with disruptive potential that may warrant further investigation given their selectivity for high-throughput screening assay targets associated with proangiogenic pathways. We also consider the cross-hallmark relationships of a number of important angiogenic pathway targets with other cancer hallmarks and we make recommendations for future research. Understanding of the role of low-dose exposure of chemicals with disruptive potential could help us refine our approach to cancer risk assessment, and may ultimately aid in preventing cancer by reducing or eliminating exposures to synergistic mixtures of chemicals with carcinogenic potential.
    Matched MeSH terms: Carcinogenesis/chemically induced*
  12. Casey SC, Vaccari M, Al-Mulla F, Al-Temaimi R, Amedei A, Barcellos-Hoff MH, et al.
    Carcinogenesis, 2015 Jun;36 Suppl 1:S160-83.
    PMID: 26106136 DOI: 10.1093/carcin/bgv035
    Potentially carcinogenic compounds may cause cancer through direct DNA damage or through indirect cellular or physiological effects. To study possible carcinogens, the fields of endocrinology, genetics, epigenetics, medicine, environmental health, toxicology, pharmacology and oncology must be considered. Disruptive chemicals may also contribute to multiple stages of tumor development through effects on the tumor microenvironment. In turn, the tumor microenvironment consists of a complex interaction among blood vessels that feed the tumor, the extracellular matrix that provides structural and biochemical support, signaling molecules that send messages and soluble factors such as cytokines. The tumor microenvironment also consists of many host cellular effectors including multipotent stromal cells/mesenchymal stem cells, fibroblasts, endothelial cell precursors, antigen-presenting cells, lymphocytes and innate immune cells. Carcinogens can influence the tumor microenvironment through effects on epithelial cells, the most common origin of cancer, as well as on stromal cells, extracellular matrix components and immune cells. Here, we review how environmental exposures can perturb the tumor microenvironment. We suggest a role for disrupting chemicals such as nickel chloride, Bisphenol A, butyltins, methylmercury and paraquat as well as more traditional carcinogens, such as radiation, and pharmaceuticals, such as diabetes medications, in the disruption of the tumor microenvironment. Further studies interrogating the role of chemicals and their mixtures in dose-dependent effects on the tumor microenvironment could have important general mechanistic implications for the etiology and prevention of tumorigenesis.
    Matched MeSH terms: Carcinogenesis/chemically induced
  13. Vincent-Chong VK, Salahshourifar I, Razali R, Anwar A, Zain RB
    Head Neck, 2016 04;38 Suppl 1:E783-97.
    PMID: 25914319 DOI: 10.1002/hed.24102
    BACKGROUND: This purpose of this meta-analysis study was to identify the most frequent and potentially significant copy number alteration (CNA) in oral carcinogenesis.

    METHODS: Seven oral squamous cell carcinoma (OSCC)-related publications, corresponding to 312 samples, were identified for this meta-analysis. The data were analyzed in a 4-step process that included the genome assembly coordination of multiple platforms, assignment of chromosomal position anchors, calling gains and losses, and functional annotation analysis.

    RESULTS: Gains were more frequent than losses in the entire dataset. High-frequency gains were identified in chromosomes 5p, 14q, 11q, 7p, 17q, 20q, 8q, and 3q, whereas high-frequency losses were identified in chromosomes 3p, 8p, 6p, 18q, and 4q. Ingenuity pathway analysis showed that the top biological function was associated with immortalization of the epithelial cells (p = 1.93E-04).

    CONCLUSION: This study has identified multiple recurrent CNAs that are involved in various biological annotations associated with oral carcinogenesis. © 2015 Wiley Periodicals, Inc. Head Neck 38: E783-E797, 2016.

    Matched MeSH terms: Carcinogenesis*
  14. Kok-Sin T, Mokhtar NM, Ali Hassan NZ, Sagap I, Mohamed Rose I, Harun R, et al.
    Oncol Rep, 2015 Jul;34(1):22-32.
    PMID: 25997610 DOI: 10.3892/or.2015.3993
    Apart from genetic mutations, epigenetic alteration is a common phenomenon that contributes to neoplastic transformation in colorectal cancer. Transcriptional silencing of tumor-suppressor genes without changes in the DNA sequence is explained by the existence of promoter hypermethylation. To test this hypothesis, we integrated the epigenome and transcriptome data from a similar set of colorectal tissue samples. Methylation profiling was performed using the Illumina InfiniumHumanMethylation27 BeadChip on 55 paired cancer and adjacent normal epithelial cells. Fifteen of the 55 paired tissues were used for gene expression profiling using the Affymetrix GeneChip Human Gene 1.0 ST array. Validation was carried out on 150 colorectal tissues using the methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) technique. PCA and supervised hierarchical clustering in the two microarray datasets showed good separation between cancer and normal samples. Significant genes from the two analyses were obtained based on a ≥2-fold change and a false discovery rate (FDR) p-value of <0.05. We identified 1,081 differentially hypermethylated CpG sites and 36 hypomethylated CpG sites. We also found 709 upregulated and 699 downregulated genes from the gene expression profiling. A comparison of the two datasets revealed 32 overlapping genes with 27 being hypermethylated with downregulated expression and 4 hypermethylated with upregulated expression. One gene was found to be hypomethylated and downregulated. The most enriched molecular pathway identified was cell adhesion molecules that involved 4 overlapped genes, JAM2, NCAM1, ITGA8 and CNTN1. In the present study, we successfully identified a group of genes that showed methylation and gene expression changes in well-defined colorectal cancer tissues with high purity. The integrated analysis gives additional insight regarding the regulation of colorectal cancer-associated genes and their underlying mechanisms that contribute to colorectal carcinogenesis.
    Matched MeSH terms: Carcinogenesis/genetics
  15. Lee PY, Low TY, Jamal R
    Adv Clin Chem, 2018 12 27;88:67-89.
    PMID: 30612607 DOI: 10.1016/bs.acc.2018.10.004
    The life span of cancer patients can be prolonged with appropriate therapies if detected early. Mass screening for early detection of cancer, however, requires sensitive and specific biomarkers obtainable from body fluids such as blood or urine. To date, most biomarker discovery programs focus on the proteome rather than the endogenous peptidome. It has been long-established that tumor cells and stromal cells produce tumor resident proteases (TRPs) to remodel the surrounding tumor microenvironment in support of tumor progression. In fact, proteolytic products of TRPs have been shown to correlate with malignant behavior. Being of low molecular weight, these unique peptides can pass through the endothelial barrier of the vasculature into the bloodstream. As such, the cancer peptidome has increasingly become a focus for biomarker discovery. In this review, we discuss on the various aspects of the peptidome in cancer biomarker research.
    Matched MeSH terms: Carcinogenesis/metabolism
  16. Goodson WH, Lowe L, Carpenter DO, Gilbertson M, Manaf Ali A, Lopez de Cerain Salsamendi A, et al.
    Carcinogenesis, 2015 Jun;36 Suppl 1:S254-96.
    PMID: 26106142 DOI: 10.1093/carcin/bgv039
    Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety 'Mode of Action' framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology.
    Matched MeSH terms: Carcinogenesis/chemically induced*
  17. Heng BC, Zhang X, Aubel D, Bai Y, Li X, Wei Y, et al.
    Cell Mol Life Sci, 2021 Jan;78(2):497-512.
    PMID: 32748155 DOI: 10.1007/s00018-020-03579-8
    YAP and TAZ are ubiquitously expressed homologous proteins originally identified as penultimate effectors of the Hippo signaling pathway, which plays a key role in maintaining mammalian tissue/organ size. Presently, it is known that YAP/TAZ also interact with various non-Hippo signaling pathways, and have diverse roles in multiple biological processes, including cell proliferation, tissue regeneration, cell lineage fate determination, tumorigenesis, and mechanosensing. In this review, we first examine the various microenvironmental cues and signaling pathways that regulate YAP/TAZ activation, through the Hippo and non-Hippo signaling pathways. This is followed by a brief summary of the interactions of YAP/TAZ with TEAD1-4 and a diverse array of other non-TEAD transcription factors. Finally, we offer a critical perspective on how increasing knowledge of the regulatory mechanisms of YAP/TAZ signaling might open the door to novel therapeutic applications in the interrelated fields of biomaterials, tissue engineering, regenerative medicine and synthetic biology.
    Matched MeSH terms: Carcinogenesis/metabolism
  18. Herdiana Y, Wathoni N, Shamsuddin S, Muchtaridi M
    Molecules, 2021 Aug 24;26(17).
    PMID: 34500560 DOI: 10.3390/molecules26175119
    α-Mangostin (AMG) is a potent anticancer xanthone that was discovered in mangosteen (Garcinia mangostana Linn.). AMG possesses the highest opportunity for chemopreventive and chemotherapeutic therapy. AMG inhibits every step in the process of carcinogenesis. AMG suppressed multiple breast cancer (BC) cell proliferation and apoptosis by decreasing the creation of cancerous compounds. Accumulating BC abnormalities and their associated molecular signaling pathways promotes novel treatment strategies. Chemotherapy is a commonly used treatment; due to the possibility of unpleasant side effects and multidrug resistance, there has been substantial progress in searching for alternative solutions, including the use of plant-derived natural chemicals. Due to the limitations of conventional cancer therapy, nanotechnology provides hope for effective and efficient cancer diagnosis and treatment. Nanotechnology enables the delivery of nanoparticles and increased solubility of drugs and drug targeting, resulting in increased cytotoxicity and cell death during BC treatment. This review summarizes the progress and development of AMG's cytotoxicity and the mechanism of death BC cells. The combination of natural medicine and nanotechnology into a synergistic capital will provide various benefits. This information will aid in the development of AMG nanoparticle preparations and may open up new avenues for discovering an effective BC treatment.
    Matched MeSH terms: Carcinogenesis/drug effects
  19. Karim NA, Ibrahim MD, Kntayya SB, Rukayadi Y, Hamid HA, Razis AF
    Asian Pac J Cancer Prev, 2016;17(8):3675-86.
    PMID: 27644601
    Moringa oleifera Lam, family Moringaceae, is a perennial plant which is called various names, but is locally known in Malaysia as "murungai" or "kelor". Glucomoringin, a glucosinolate with from M. oleifera is a major secondary metabolite compound. The seeds and leaves of the plant are reported to have the highest amount of glucosinolates. M. oleifera is well known for its many uses health and benefits. It is claimed to have nutritional, medicinal and chemopreventive potentials. Chemopreventive effects of M. oleifera are expected due to the existence of glucosinolate which it is reported to have the ability to induce apoptosis in anticancer studies. Furthermore, chemopreventive value of M. oleifera has been demonstrated in studies utilizing its leaf extract to inhibit the growth of human cancer cell lines. This review highlights the advantages of M. oleifera targeting chemoprevention where glucosinolates could help to slow the process of carcinogenesis through several molecular targets. It is also includes inhibition of carcinogen activation and induction of carcinogen detoxification, anti-inflammatory, anti-tumor cell proliferation, induction of apoptosis and inhibition of tumor angiogenesis. Finally, for synergistic effects of M. oleifera with other drugs and safety, essential for chemoprevention, it is important that it safe to be consumed by human body and works well. Although there is promising evidence about M. oleifera in chemoprevention, extensive research needs to be done due to the expected rise of cancer in coming years and to gain more information about the mechanisms involved in M. oleifera influence, which could be a good source to inhibit several major mechanisms involved in cancer development.
    Matched MeSH terms: Carcinogenesis/drug effects*
  20. Tan BL, Norhaizan ME
    Biomed Res Int, 2017;2017:9017902.
    PMID: 28210630 DOI: 10.1155/2017/9017902
    Cancer is a significant global health concern affecting men and women worldwide. Although current chemopreventive drugs could inhibit the growth of cancer cells, they exert many adverse side effects. Dietary factor plays a crucial role in the management of cancers and has drawn the attention of researchers to be used as an option to combat this disease. Both in vitro and in vivo studies showed that rice and its by-products display encouraging results in the prevention of this disease. The mechanism of anticancer effect is suggested partly through potentiation of bioactive compounds like vitamin E, phytic acid, γ-aminobutyric acid (GABA), γ-oryzanol, and phenolics. Nevertheless, the bioactivity of rice and its by-products is still incompletely understood. In this review, we present the findings from a preclinical study both in in vitro and in animal experiments on the promising role of rice by-products with focus on cancer prevention.
    Matched MeSH terms: Carcinogenesis/drug effects*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links