Displaying publications 41 - 42 of 42 in total

Abstract:
Sort:
  1. Chan YC, Punzalan-Sotelo AM, Kannan TA, Shahrizaila N, Umapathi T, Goh EJH, et al.
    Muscle Nerve, 2017 Nov;56(5):919-924.
    PMID: 28093784 DOI: 10.1002/mus.25577
    INTRODUCTION: In this study we propose electrodiagnostic criteria for early reversible conduction failure (ERCF) in axonal Guillain-Barré syndrome (GBS) and apply them to a cohort of GBS patients.

    METHODS: Serial nerve conduction studies (NCS) were retrospectively analyzed in 82 GBS patients from 3 centers. The criteria for the presence of ERCF in a nerve were: (i) a 50% increase in amplitude of distal compound muscle action potentials or sensory nerve action potentials; or (ii) resolution of proximal motor conduction block with an accompanying decrease in distal latencies or compound muscle action potential duration or increase in conduction velocities.

    RESULTS: Of 82 patients from 3 centers, 37 (45%) had ERCF, 21 (26%) had a contrasting evolution pattern, and 8 (10%) had both. Sixteen patients did not show an amplitude increase of at least 50%.

    CONCLUSION: Our proposed criteria identified a group of patients with a characteristic evolution of NCS abnormality that is consistent with ERCF. Muscle Nerve 56: 919-924, 2017.

    Matched MeSH terms: Neural Conduction/physiology*
  2. Poznanski RR, Cacha LA, Al-Wesabi YMS, Ali J, Bahadoran M, Yupapin PP, et al.
    Sci Rep, 2017 May 31;7(1):2746.
    PMID: 28566682 DOI: 10.1038/s41598-017-01849-3
    A model of solitonic conduction in neuronal branchlets with microstructure is presented. The application of cable theory to neurons with microstructure results in a nonlinear cable equation that is solved using a direct method to obtain analytical approximations of traveling wave solutions. It is shown that a linear superposition of two oppositely directed traveling waves demonstrate solitonic interaction: colliding waves can penetrate through each other, and continue fully intact as the exact pulses that entered the collision. These findings indicate that microstructure when polarized can sustain solitary waves that propagate at a constant velocity without attenuation or distortion in the absence of synaptic transmission. Solitonic conduction in a neuronal branchlet arising from polarizability of its microstructure is a novel signaling mode of electrotonic signals in thin processes (<0.5 μm diameter).
    Matched MeSH terms: Neural Conduction/physiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links