Being a prominent tourist destination, the hotel industry's demand in Malaysia has been increasing day by day. There is still a shortage of studies focusing on how hotels can make environmental management routine work, take environmental laws seriously and be more responsive to the environment. This study focused on the connections between green employee involvement, green performance management and green dynamic capability in implementing environmental law in the hospitality industry. The study also evaluates the mediating role of implementing environmental law between green employee involvement, green performance management, green dynamic capability and organisational citizenship behaviour to reduce pollution. This study employed a quantitative approach to test the hypotheses and a convenient sampling method to collect the data from hotel employees. Out of 600 distributed questionnaires, useable responses were 253 to proceed with data analysis. Data were analysed through structural equation modelling (SEM) using the Smart-PLS and SPSS. The relationship between green employee involvement, green performance management, green dynamic capability and implementation of environmental laws was discovered and considered unique in the hotel industry in Malaysia. The study further established the mediating role of environmental law between independent and dependent variables.
International tourists in Malaysia have been playing a significant role in the economy. However, tourists' consumption of natural resources could be a threat to the environment. Green practices in the hotel industry have triggered a great opportunity to save water and energy consumption and maintain sustainable practices in the tourism and hospitality industries. This is a study on international tourists' intention to visit green hotels in Malaysia with related factors such as green availability, green price sensitivity, attitude, and subjective norm. For data collection, the researchers used self-administered questionnaires and distributed them to international tourists in Malaysia. For the analysis, structural equation modeling (PLS-SEM) was applied for analysis. Results found that green price sensitivity, attitude, subjective norm, and perceived behavioral control positively influence tourists' intention to visit green hotels in Malaysia. Attitude also mediated between green price sensitivity and tourists' intention to visit green hotels in Malaysia. This study has shown the novelty by establishing the relationships among variables and contributing to the Theory of Planned Behaviour, which will benefit future researchers. The study posed several recommendations for practitioners as there is a need to maintain appropriate standards of environmentally friendly practices in hotels, and consumers' support for consuming green-related products impacts their survival, growth, and sustainability. It will help hotel managers learn more about their guests and create more effective marketing plans.
Green growth is an extension of traditional economic growth. Financial fragility and ICT penetration are important pillars of green growth sustainability. However, very limited studies have explored this association and provided conflicting results. Thus, our study intends to fill this vacuum by exploring the impact of financial fragility and ICT penetration on renewable energy consumption and green growth for the top five polluting economies over the period 1996-2020. In this study, financial fragility is measured by bank costs and bank non-performing loans. Panel ARDL technique is used to find out long-run and short-run results estimates. Financial fragility reduces renewable energy consumption and green growth in the long run. However, internet penetration enhances renewable energy consumption and green growth in the long run. Our findings suggest imperative policy implications for the green economy.
This study aims to identify current and future research trends in sustainable bioenergy production. The systematic review is conducted using a social network analysis method. The data were collected from the Web of Science and Scopus database (2010-2021). Out of the 1747 articles reviewed, 100 were found to be relevant for thematic analysis. The results uncovered four domains of palm oil biodiesel production for sustainable energy management: (1) renewable energy, (2) biodiesel, (3) bioenergy, and (4) life cycle assessment. This study has proposed a sustainable bioenergy production framework based on the four main domains. The framework sheds light on the future of sustainable bioenergy production. The findings indicate the potential growth of the research topic, including sustainable bioenergy, palm oil biodiesel, energy management, and carbon emissions reduction. Future research must incorporate the energy management framework to design a sustainable energy management ecosystem strategy. In addition, the industry must comply with the international sustainability standard and sustainable development goals to manage the energy supply chain and consistency of palm oil biodiesel production.
Since the inception of the twenty-first century, there has been a profound upsurge in economic policy uncertainty (EPU) with several economic and environmental impacts. Although there exists a growing body of literature that probes the economic effects of EPU, the EPU-energy nexus yet remains understudied. To fill this gap, the current study probes the impact of disaggregated EPU (i.e., monetary, fiscal, and trade policy uncertainty) on energy consumption (EC) in the USA covering the period 1990M1-2020M12. In particular, we use sectoral EC (i.e., energy consumed by the residential sector, the industrial sector, the transport sector, the electric power sector, and the commercial sector) in consort with total EC. The findings from the bootstrap ARDL approach document that monetary policy uncertainty (MP) plunges EC, whereas trade (TP) and fiscal policy uncertainty (FP) escalate EC in the long run. On the contrary, there is a heterogeneous impact of FP and MP across sectors in the short run, while TP does not affect EC. Keeping in view the findings, we propose policy recommendations to achieve numerous Sustainable Development Goals.
Previous "oil curse" studies primarily estimate a single, linear effect of oil rents on income using time-invariant parameters over entire sample periods. This means the true effects of oil dependence cannot be captured if structural changes are taking place, or effects are non-linear. We introduce a two regime Markov-switching model into the resource effects literature to assess the time-varying effects of oil rent dependence on the Malaysian manufacturing sector. We also allow for non-linear threshold effects. We find the impact of oil rents is regime-dependent. Under a rarer "first regime" structure, there is no significant effect. Under a predominant "second regime," there is an inverted U-shaped effect, with oil rents' share of GDP up to 8% positively associated with manufacturing, and negatively associated beyond this. We find connections between regime changes and the 1997 Asian financial crisis and 2008 global financial crisis. Implications for effective diversification policies are discussed.
This research incorporates sustainable materials such as ground granulated blast furnace slag (GGBS) and recycled waste glass (RWG) as cement and fine aggregate replacement respectively to produce green dry mix mortar paving blocks. The GGBS and RWG contents in the mortar paving block were optimised using the response surface methodology (RSM), considering the performances of the ultrasonic pulse velocity (UPV), flexural and compressive strengths, water absorption, and Cantabro loss. Life cycle assessment (LCA) was also conducted to evaluate the environmental impact of the optimised green mortar paving blocks. The RSM suggested that the paving block with optimum GGBS and RWG contents of 26.5% and 91.3%, respectively, could exhibit compressive strength of 36.5 MPa, which complied with the requirement for concrete segmental paving units (MA20). Excluding the mixes not fulfilling the MA20 requirement, the mix with 40% GGBS and 100% RWG exhibited the lowest values for the acidification potential (AP), global warming potential (GWP), photochemical oxidation (POCP), abiotic depletion potential for fossil fuel (ADPF), and water scarcity/strength ratio. Whereas, for eutrophication potential (EP) and abiotic depletion for elements (ADP (elements))/strength ratio, the mix with 100% RWG exhibited the lowest value. The optimised mix from RSM showed a similar performance as the two mixes.
Cathode in photocatalytic fuel cell (PFC) plays a crucial role in degradation of organic contaminants. In this study, synthesized copper oxide (CuO) was loaded on carbon plate and used as photocathode in PFC for degradation of synthetic azo dye Reactive Black 5 (RB5) and real textile wastewater. Morphology and structural phase of the synthesized CuO were analyzed using scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. Several operating parameters had been investigated such as light irradiation, initial dye concentration, and pH of azo dye solution within 6 h of irradiation time. The lowest initial concentration of RB5 (10 mg L-1) achieved 100% color removal compared to the highest initial concentration (40 mg L-1) which only achieved 77.1% color removal within 6 h of irradiation time. The influence of external resistance was significant in electricity generation but trivial in dye degradation efficiency. The external resistance of 6000 Ω yielded highest maximum power density, with Pmax of 0.2631 μW cm-2, followed by 1000 Ω (0.2196 μW cm-2) and 8000 Ω (0.1587 μW cm-2), respectively. The real textile wastewater with dilution ratio (DR) 1:6 yielded the highest energy conversion efficiency, η (3.62%), followed by DR 1:4 (3.19%) and DR 1:2 (1.96%), respectively.
The excess sludge from municipal sewage treatment plants is rich in Fe (III) due to chemical dephosphorization. The activation of peroxymonosulfate (PMS) by biochar derived from anaerobic and aerobic iron-containing excess sludge was studied systematically in this research. Fe (III)-containing excess sludge was cultured in an anaerobic environment for conversion of partial Fe (III) to Fe (II), which was further carbonized to prepare biochar labeled AnSx@Fe. Meanwhile, aerobic sludge with different Fe (III) content was directly carbonized to produce biochar labeled AeS@Fe. For biochar (AnS20@Fe-15%) prepared from 15% Fe(III)-containing anaerobic cultured 20 days sludge, the relative contents of Fe (III) and Fe (II) were 21.26% and 78.74%, which were 31.03% and 68.97% for biochar (AeS@Fe-10%) prepared from 10% Fe (III)-containing aerobic sludge. Fe (III) can be reduced to Fe (II) by both anaerobic culture and carbonization. Their removal rates of tetracycline (TC) through 60 min PMS activation were 97% and 98%, with TOC (Total organic carbon) removal of 61.8% and 53.4% respectively. The reactive species including sulfate radical [Formula: see text], hydroxyl radical (·OH) and singlet oxygen (1O2) were produced during PMS activation. After O2-aeration treatment of both AeS@Fe and AnSx@Fe, the relative content of Fe (II) was decreased and group C = O was disappeared, which resulted in reduction of [Formula: see text], ·OH and 1O2. The generation of [Formula: see text] and ·OH was dominated by the Fe (II) activation and the 1O2 generation was originated from graphite type N and C = O. Direct carbonization of aerobic and anaerobic sludge is a feasible method to produce biochar for PMS activation.
This study examined the influence of tail risks on global financial markets, which aids in better understanding of the emergence of COVID-19. This study looks at the global and Vietnamese stock markets impacted by the COVID-19 pandemic to identify systemic emergencies. Risk dependent value (CoVaR) and Delta link VaR are two important tail-related risk indicators used in Conditional Bivariate Dynamic Correlation (DCC) (CoVaR). The empirical findings demonstrate that when COVID-19's worldwide spread widens, the volatility transmission of systemic risks across the global stock market and multiple exchanges shifts and becomes more relevant over time. At the time of COVID-19, the world industrial market was larger than the Vietnamese stock market, and the Vietnamese stock market posed a lesser danger to the global market. A closer examination of the link between the Vietnam value-at-risk (VaR) range index sample and the world stock index indicates a significant degree of downside risk integration in key monetary systems, particularly during the COVID-19 era. Our study findings may help regulators, politicians, and portfolio risk managers in Vietnam and worldwide during the unique moment of uncertainty created by the COVID-19 epidemic.
Schedule overrun is one of the greatest hindrances to construction project performance, thereby making schedule management an integral part of construction project management. The aim of this study is to examine how the effect of sustainable energy management (SEM) and sustainable waste management (SWM) on schedule performance (SP) is mediated by technological complexity (TC) and moderated by project size (PS). Data were obtained by means of a questionnaire survey of 168 completed construction projects in Nigeria. The partial least squares structural equation modelling (PLS-SEM) technique was adopted in analysing the collected data. The results show that TC partially mediates the relationship between SWM and SP, while TC fully mediates the relationship between SEM and SP. Also, the findings of the study indicate that the negative effect of SWM on SP will be greater with large PS. This study contributes to previous studies in the area of schedule management, by providing empirical proof to explain the means through which SWM and SEM could lead to SP through TC, and how this would vary depending on PS. The study proffers ways for contractors to improve the SP of their projects considering PS and TC.
The purpose of this paper is to compare the performance of environmental, social, and governance (ESG) in developing and developed countries prior to and during the COVID-19 pandemic; the study also seeks to reveal the impact of the COVID-19 on the performance of ESG during the pandemic period. Based on a large international panel dataset of 12,325 company-year observations covering 2016-2021, panel regression analysis examined the study hypotheses and achieved the study objectives. The findings indicate that companies have taken precautions against the threats of the COVID-19 pandemic by ensuring compliance with ESG performance to prove their ethical behavior during a crisis. Our findings call into question the notion that companies in developed countries outperform companies in developing countries in terms of ESG performance. As a result, companies in emerging markets outperform companies in developed markets regarding environmental performance, while developed markets focus on social performance. Besides, the ESG performance is positively and significantly affected by the COVID-19, which indicates that during crises, it is important for companies to comply with ethical behavior and the most acceptable in societies. Also, the pandemic has a positive impact on both environmental and social performance, while it has a negative impact on governance performance alone. A considerable body of the literature has addressed the effect of the COVID-19 pandemic on various aspects of a company's financial and non-financial practices. However, limited effort was given to ESG performance. The current study fills this gap by evaluating the direct effect of the COVID-19 crisis on the ESG performance in developing and developed countries. It also provides insight into the ESG performance and corporate behavior and obligations.
Attaining Sustainable Development Goals (SDGs) is important to control the adverse impacts of climate change and achieve sustainable development. Among the 17 SDGs, target 13 emphasizes enhancing urgent actions to combat climate-related changes. This target is also dependent on target 7, which advocates enhancing access to cheap alternative sustainable energy. To accomplish these targets, it is vital to curb the transport CO2 emissions (TCO2) which increased by approximately 80% from 1990 to 2019. Thus, this study assesses the role of transport renewable energy consumption (TRN) in TCO2 by taking into consideration transport fossil fuel consumption (TTF) and road infrastructure (RF) from 1970 to 2019 for the United States (US) with the intention to suggest some suitable mitigation policies. Also, this study assessed the presence of transport environmental Kuznets curve (EKC) to assess the direction of transport-induced growth. The study used the Bayer-Hanck cointegration test which utilizes four different cointegration techniques to decide cointegration along with the Gradual Shift causality test which considers structural shift and fractional integration in time series data. The long-run findings of the Dynamic Ordinary Least Squares (DOLS) test, which counters endogeneity and serial correlation, revealed that the transport renewable energy use mitigates as well as Granger causes TCO2. However, transport fossil fuel usage and road infrastructure enhance TCO2. Surprisingly, the transport EKC is invalid in the case of the US, and increased growth levels are harmful to the environment. The association between TCO2 and economic growth is similar to a U-shaped curve. The Spectral Causality test revealed the growth hypothesis regarding transport fossil fuel use and economic growth connection, which suggests that policymakers should be cautious while decreasing the usage of transport fossil fuels because it may hamper economic progress. These findings call for revisiting growth strategies and increasing green energy utilization in the transport sector to mitigate transport emissions.
In view of the simple and rapid conveniency of magnetic separation, magnetic nanocomposites had notably gained attention from researchers for environmental field applications. In this work, carboxylated magnetic multi-walled carbon nanotubes (c-MMWCNTs) and novel sulfonated MMWCNTs (s-MMWCNTs) were synthesized by a facile solvent-free direct doping method. Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscope, energy dispersive X-ray, vibrating sample magnetometer, and point of zero charge analyses confirmed the successful doping of the Fe3O4 nanoparticles into the functionalized MWCNTs to form MMWCNTs. Besides, the bonding stabilities of both c-MMWCNTs and s-MMWCNTs were compared, and results showed that s-MMWCNTs possessed more substantial bonding stability than that of c-MMWCNTs with significantly less leaching amount of Fe3O4. The adsorption capacity of s-MMWCNTs was higher than that of c-MMWCNTs owing to the stronger electronegativity sulfonic group in s-MMWCNTs. Moreover, the reusability experiments proved that the adsorbent remained consistently excellent MB removal efficiency (R > 94%) even reused for twelve cycles of batch adsorption. The finding of the present work highlights the simple fabrication of novel s-MMWCNTs and its potential to be served as a promising and sustainable adsorbent for water remediation owing to its enhanced bonding stability, high adsorption performance, magnetic separability, and supreme recyclability.
While studies have demonstrated that air pollution can be catastrophic to the population's health, few empirical studies are found in the economic literature because a considerable proportion of the evidence comes from epidemiological studies. Because of the crucial role of governance in the health community, good governance has been a contentious issue in public sector management in recent years. Therefore, the aim of this study is to examine the effects of air pollution and the role of governance on health outcomes. This study employed the generalized method of moment (GMM) estimation techniques to analyse panel data for 72 developing countries from 2010 to 2017. The empirical results confirm that higher PM2.5 and CO2 levels have a detrimental influence on life expectancy and healthy life expectancy, whereas the role of governance has a positive impact on life expectancy and healthy life expectancy. Furthermore, the findings show governance quality plays a role in moderating the negative effect of PM2.5 on health outcomes. The ongoing rise in air pollution has had a significant impact on the health of developing countries. It appears that governance quality has improved health outcomes. The findings have important policy implications, such that strengthening governance can reduce air pollution emissions in developing countries. However, to reduce the health effects of air pollution, developing countries must implement effective environmental development policies and track the implementation and enforcement of such policies.
This study aimed to compare the performance of biofiltration, constructed wetland, and constructed wetland microbial fuel cell (CW-MFC). The transformation from a biofiltration unit to a hybrid CW-MFC was demonstrated with the advantages of improvement of wastewater treatment while generating electricity simultaneously. The introduction of plants to the upper region of the bioreactor enhanced the DO level by 0.8 mg/L, ammonium removal by 5 %, and COD removal by 1 %. The integration of electrodes and external circuits stimulated the degradation rate of organic matter in the anodic region (1 % without aeration and 3 % with aeration) and produced 5.13 mW/m3 of maximum power density. Artificial aeration improved the nitrification efficiency by 38 % and further removed the residual COD to an efficiency of 99 %. The maximum power density was also increased by 3.2 times (16.71 mW/m3) with the aid of aeration. In treating higher organic loading wastewater (3M), the maximum power density showed a significant increment to 78.01 mW/m3 (4.6-fold) and the COD removal efficiency was 98 %. The ohmic overpotential dominated the proportion of total loss (67-91 %), which could be ascribed to the low ionic conductivity. The reduction in activation and concentration loss contributed to the lower internal resistance with the additional aeration and higher organic loading. Overall, the transformation from biofiltration to a hybrid CW-MFC system is worthwhile since the systems quite resemble while CW-MFC could improve the wastewater treatment as well as recover energy from the treated wastewater.
This study investigates the moderating role of environmental disclosures on the market performance of 48 Fintech and 140 non-Fintech firms during the pandemic using data from 2011 to 2022. Ordinary least squares and correlations were used for data analysis. The study's first finding revealed that Fintech firms had a better environmental performance (78.4%) than non-Fintech firms during the pandemic. The study's second finding indicated that environmental disclosures are crucial for shareholders and contributed almost 10.2% to the Fintech firms' market performance during the pandemic. This study's contribution is significant in enhancing the understanding of the shareholders' sensitivity towards sustainability disclosures during financial crisis. The findings of this study are essential for policymakers, start-up entrepreneurs, and shareholders.
The satisfaction of clients/owners, though very important as a determinant of construction project performance, has often been given very little attention in pro-environmental-related studies. To this end, this study's aim is to determine how owner's satisfaction (OS) can be realized via health and safety performance (HSP) and economic performance (EP) on construction projects that adopt pro-environmental construction practices (PCP) in Nigeria and to determine how the impact of HSP on OS can vary contingent on the level of EP. This study's aim was realized through data obtained from a survey of 249 construction projects and analyzed by adopting the partial least squares structural equation modeling (PLS-SEM) technique. The results of this study signify that HSP has a significant positive effect on OS; the nexus between HSP and OS is partially mediated by EP, while EP moderates the HSP-OS link with high EP producing the stronger effect. The practical contributions of this research emanate from the fact that its findings show that the existing gap between the level of HSP and OS is partly due to EP. Also, projects with high EP have a greater influence on the HSP-OS relationship. Therefore, to bridge the gap between HSP and OS in construction projects that adopt PCP, due attention should be given to EP.
Logistics is a crucial part of every business. The logistics sector not only contributes significantly to Asian economies but also has far-reaching effects on ecological and social concerns. Therefore, it is important to examine the factors that can affect the logistics performance of the country. Hence, the primary objective of the study is to estimate the impact of CO2 emissions, ICT, and human capital on the logistics performance of the 20 Asian economies. In order to investigate the relationship between the variables, we have employed the OLS, 2SLS, GMM, and panel quantile regression. The estimates of CO2 emissions and GHG emissions are significantly negative in 2SLS and GMM methods, implying that environmental pollution hurt logistic performance. The estimates of ICT and education are positively significant, suggesting that increased use of internet and higher education rate are crucial in improving logistics performance. In the panel quantile regression model, the estimates of CO2, internet, and education are insignificant at most quantiles except at a few higher quantiles. Thus, governments should invest in the development of efficient logistics infrastructure to achieve sustainable development.
Microplastic (MP) is an emerging contaminant of concern due to its ubiquitous quantity in the environment, small size, and potential toxicity due to strong affinity towards other contaminants. In this work, MP particles (5-300 μm) were extracted from a commercial facial cleanser and determined to be irregular polyethylene (PE) microbeads based on characterization with field emission scanning electron microscopy (FESEM) and Raman spectroscopy. The potential of extracted MP acting as toxic pollutants' vector was analyzed via adsorption of methylene blue and methyl orange dye where significant dye uptake was observed. Synthetic wastewater containing the extracted MP was subjected to a continuous-flow column study using palm kernel shell and coconut shell biochar as the filter/adsorbent media. The prepared biochar was characterized via proximate and ultimate analysis, FESEM, contact angle measurement, atomic force microscopy (AFM), and Fourier transform infrared (FTIR) spectroscopy to investigate the role of the biochar properties in MP removal. MP removal performance was determined by measuring the turbidity and weighing the dry mass of particles remaining in the effluent following treatment. Promising results were obtained from the study with highest removal of MP (96.65%) attained through palm kernel shell biochar with particle size of 0.6-1.18 mm and continuous-flow column size of 20 mm.