The excess sludge from municipal sewage treatment plants is rich in Fe (III) due to chemical dephosphorization. The activation of peroxymonosulfate (PMS) by biochar derived from anaerobic and aerobic iron-containing excess sludge was studied systematically in this research. Fe (III)-containing excess sludge was cultured in an anaerobic environment for conversion of partial Fe (III) to Fe (II), which was further carbonized to prepare biochar labeled AnSx@Fe. Meanwhile, aerobic sludge with different Fe (III) content was directly carbonized to produce biochar labeled AeS@Fe. For biochar (AnS20@Fe-15%) prepared from 15% Fe(III)-containing anaerobic cultured 20 days sludge, the relative contents of Fe (III) and Fe (II) were 21.26% and 78.74%, which were 31.03% and 68.97% for biochar (AeS@Fe-10%) prepared from 10% Fe (III)-containing aerobic sludge. Fe (III) can be reduced to Fe (II) by both anaerobic culture and carbonization. Their removal rates of tetracycline (TC) through 60 min PMS activation were 97% and 98%, with TOC (Total organic carbon) removal of 61.8% and 53.4% respectively. The reactive species including sulfate radical [Formula: see text], hydroxyl radical (·OH) and singlet oxygen (1O2) were produced during PMS activation. After O2-aeration treatment of both AeS@Fe and AnSx@Fe, the relative content of Fe (II) was decreased and group C = O was disappeared, which resulted in reduction of [Formula: see text], ·OH and 1O2. The generation of [Formula: see text] and ·OH was dominated by the Fe (II) activation and the 1O2 generation was originated from graphite type N and C = O. Direct carbonization of aerobic and anaerobic sludge is a feasible method to produce biochar for PMS activation.
* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.