Displaying publications 61 - 80 of 369 in total

Abstract:
Sort:
  1. Hui RK, Chen JW, Chan KG, Leung FC
    Genome Announc, 2014;2(6).
    PMID: 25395638 DOI: 10.1128/genomeA.01164-14
    We previously identified and presented the draft genome of a Xanthomonadaceae bacterial strain Dyella japonica A8 which shows quorum-quenching activity. Here, we report the complete, closed genome sequence of this bacterium. This complete genome may help to further investigate the comparative quorum-quenching activity among D. japonica strains.
  2. Chan KG, Yin WF, Goh SY
    Genome Announc, 2014;2(3).
    PMID: 24812228 DOI: 10.1128/genomeA.00427-14
    Pandoraea pnomenusa strain 3kgm has been identified as a quorum-sensing strain isolated from soil. Here, we report the complete genome sequence of P. pnomenusa strain 3kgm by using the Pacific Biosciences single-molecule real-time (PacBio RS SMRT) sequencer high-resolution technology.
  3. Chan KG, Tee KK, Yin WF, Tan JY
    Genome Announc, 2014;2(6).
    PMID: 25502672 DOI: 10.1128/genomeA.01276-14
    Pluralibacter gergoviae FB2, a bacterial strain isolated from packed food, has been found to exhibit quorum-quenching properties. Hence, we report the first, complete genome of P. gergoviae sequenced using the Pacific Biosciences single-molecule, real-time (SMRT) platform.
  4. Chan KG, Yin WF, Lim YL
    Genome Announc, 2014;2(2).
    PMID: 24699957 DOI: 10.1128/genomeA.00246-14
    Here, we report the complete genome sequence of Pseudomonas aeruginosa strain YL84, which was isolated from compost. This strain was found to be a chitinase-producing quorum-sensing bacterium.
  5. Najah S, Chong TM, Gerbaud C, Chan KG, Mellouli L, Pernodet JL
    Genome Announc, 2017 Aug 24;5(34).
    PMID: 28839022 DOI: 10.1128/genomeA.00828-17
    Streptomyces sp. TN58, isolated from a Tunisian soil sample, produces several natural products, including acyl alpha-l-rhamnopyranosides. It possesses a 7.6-Mb linear chromosome. This is, to our knowledge, the first genome sequence of a microorganism known to produce acyl alpha-l-rhamnopyranosides, and it will be helpful to study the biosynthesis of these specialized metabolites.
  6. Khayi S, Blin P, Chong TM, Robic K, Chan KG, Faure D
    Genome Announc, 2018 Jan 25;6(4).
    PMID: 29371347 DOI: 10.1128/genomeA.01447-17
    Dickeya spp. are bacterial pathogens causing soft-rot and blackleg diseases on a wide range of ornamental plants and crops. In this paper, we announce the PacBio complete genome sequences of the plant pathogens Dickeya solani RNS 08.23.3.1.A (PRI3337) and Dickeya dianthicola RNS04.9.
  7. Liew YJM, Chua KO, Yong HS, Song SL, Chan KG
    Rev Bras Bot, 2022;45(4):1209-1222.
    PMID: 36320930 DOI: 10.1007/s40415-022-00845-w
    Boesenbergia rotunda (L.) Mansf. is a medically important ginger species of the family Zingiberaceae but its genomic information on molecular phylogeny and identification is scarce. In this work, the chloroplast genome of B. rotunda was sequenced, characterized and compared to the other Zingiberaceae species to provide chloroplast genetic resources and to determine its phylogenetic position in the family. The chloroplast genome of B. rotunda was 163,817 bp in length and consisted of a large single-copy (LSC) region of 88,302 bp, a small single-copy (SSC) region of 16,023 bp and a pair of inverted repeats (IRA and IRB) of 29,746 bp each. The chloroplast genome contained 113 unique genes, including 79 protein-coding genes, 30 transfer RNA (tRNA) genes and four ribosomal RNA (rRNA) genes. Several genes had atypical start codons, while most amino acids exhibited biased usage of synonymous codons. Comparative analyses with various chloroplast genomes of Zingiberaceae taxa revealed several highly variable regions (psbK-psbI, trnT-GGU-psbD, rbcL-accD, ndhF-rpl32, and ycf1) in the LSC and SSC regions in the chloroplast genome of B. rotunda that could be utilized as molecular markers for DNA barcoding and species delimitation. Phylogenetic analyses based on shared protein-coding genes revealed that B. rotunda formed a distinct lineage with B. kingii Mood & L.M.Prince, in a subclade that also contained the genera Kaempferia and Zingiber. These findings constitute the first chloroplast genome information of B. rotunda that could be a reference for phylogenetic analysis and identification of genus Boesenbergia within the Zingiberaceae family.

    SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s40415-022-00845-w.

  8. Khayi S, Blin P, Chong TM, Chan KG, Faure D
    Stand Genomic Sci, 2016;11:87.
    PMID: 27942352
    Several species of the genus Dickeya provoke soft rot and blackleg diseases on a wide range of plants and crops. Dickeya solani has been identified as the causative agent of diseases outbreaks on potato culture in Europe for the last decade. Here, we report the complete genome of the D. solani IPO 2222T. Using PacBio and Illumina technologies, a unique circular chromosome of 4,919,833 bp was assembled. The G + C content reaches 56% and the genomic sequence contains 4,059 predicted proteins. The ANI values calculated for D. solani IPO 2222T vs. other available D. solani genomes was over 99.9% indicating a high genetic homogeneity within D. solani species.
  9. See-Too WS, Ee R, Lim YL, Convey P, Pearce DA, Mohidin TBM, et al.
    Stand Genomic Sci, 2017;12:52.
    PMID: 28904741 DOI: 10.1186/s40793-017-0264-0
    Arthrobacter alpinus R3.8 is a psychrotolerant bacterial strain isolated from a soil sample obtained at Rothera Point, Adelaide Island, close to the Antarctic Peninsula. Strain R3.8 was sequenced in order to help discover potential cold active enzymes with biotechnological applications. Genome analysis identified various cold adaptation genes including some coding for anti-freeze proteins and cold-shock proteins, genes involved in bioremediation of xenobiotic compounds including naphthalene, and genes with chitinolytic and N-acetylglucosamine utilization properties and also plant-growth-influencing properties. In this genome report, we present a complete genome sequence of A. alpinus strain R3.8 and its annotation data, which will facilitate exploitation of potential novel cold-active enzymes.
  10. Goh KM, Chan KG, Yaakop AS, Ee R
    J Biotechnol, 2015 Jun 20;204:13-4.
    PMID: 25858153 DOI: 10.1016/j.jbiotec.2015.03.007
    Jeotgalibacillus spp. are halophilic bacteria within the family Planococcaceae. No genomes of Jeotgalibacillus spp. have been reported to date, and their metabolic pathways are unknown. How the bacteria survive in hypertonic conditions such as seawater is yet to be discovered. As only few studies have been conducted on Jeotgalibacillus spp., potential applications of these bacteria are unknown. Here, we present the complete genome of J. malaysiensis D5(T) (=DSM 28777(T) =KCTC 33350(T)), which is invaluable in identifying interesting applications for this genus.
  11. Lim YL, Ee R, Yong D, Tee KK, Yin WF, Chan KG
    J Biotechnol, 2015 Nov 20;214:83-4.
    PMID: 26393955 DOI: 10.1016/j.jbiotec.2015.09.018
    Pandoraea pnomenusa RB-38 is a bacterium isolated from a former sanitary landfill site. Here, we present the complete genome of P. pnomenusa RB38 in which an oxalate utilization pathway was identified. The genome analysis suggested the potential of this strain as an effective biocontrol agent against oxalate-producing phytopathogens.
  12. See-Too WS, Convey P, Pearce DA, Lim YL, Ee R, Yin WF, et al.
    J Biotechnol, 2016 Mar 10;221:114-5.
    PMID: 26808870 DOI: 10.1016/j.jbiotec.2016.01.026
    Planococcus rifietoensis M8(T) (=DSM 15069(T)=ATCC BAA-790(T)) is a halotolerant bacterium with potential plant growth promoting properties isolated from an algal mat collected from a sulfurous spring in Campania (Italy). This paper presents the first complete genome of P. rifietoensis M8(T). Genes coding for various potentially plant growth promoting properties were identified within its genome.
  13. See-Too WS, Lim YL, Ee R, Convey P, Pearce DA, Yin WF, et al.
    J Biotechnol, 2016 Mar 20;222:84-5.
    PMID: 26876481 DOI: 10.1016/j.jbiotec.2016.02.017
    Pseudomonas sp. strain L10.10 (=DSM 101070) is a psychrotolerant bacterium which was isolated from Lagoon Island, Antarctica. Analysis of its complete genome sequence indicates its possible role as a plant-growth promoting bacterium, including nitrogen-fixing ability and indole acetic acid (IAA)-producing trait, with additional suggestion of plant disease prevention attributes via hydrogen cyanide production.
  14. Lim YL, Chan KG, Ee R, Belduz AO, Canakci S, Kahar UM, et al.
    J Biotechnol, 2015 Oct 20;212:65-6.
    PMID: 26297905 DOI: 10.1016/j.jbiotec.2015.08.007
    Anoxybacillus gonensis type strain G2(T) (=NCIMB 13,933(T) =NCCB 100040(T)) has been isolated from the Gönen hot springs in Turkey. This strain produces a number of well-studied, biotechnologically important enzymes, including xylose isomerase, carboxylesterase, and fructose-1,6-bisphosphate aldolase. In addition, this strain is an excellent candidate for the bioremediation of areas with heavy metal pollution. Here, we present a high-quality, annotated, complete genome of A. gonensis G2(T). Furthermore, this report provides insights into several novel enzymes of strain G2(T) and their potential industrial applications.
  15. Hong KW, Koh CL, Sam CK, Yin WF, Chan KG
    J Bacteriol, 2012 Nov;194(22):6317.
    PMID: 23105060 DOI: 10.1128/JB.01578-12
    Burkholderia sp. strain GG4, isolated from the ginger rhizosphere, possesses a unique N-acylhomoserine lactone (AHL)-modifying activity that reduces 3-oxo-AHLs to 3-hydroxy-AHLs. To the best of our knowledge, this is the first sequenced genome from a bacterium of the genus Burkholderia that shows both quorum-sensing and signaling confusion activities.
  16. Chan KG, Yong D, Ee R, Lim YL, Yu CY, Tee KK, et al.
    J Biotechnol, 2016 Feb 10;219:124-5.
    PMID: 26742625 DOI: 10.1016/j.jbiotec.2015.12.037
    Pandoraea oxalativorans DSM 23570(T) is an oxalate-degrading bacterium that was originally isolated from soil litter near to oxalate-producing plant of the genus Oxalis. Here, we report the first complete genome of P. oxalativorans DSM 23570(T) which would allow its potential biotechnological applications to be unravelled.
  17. Yong D, Ee R, Lim YL, Yu CY, Ang GY, How KY, et al.
    J Biotechnol, 2016 Jan 10;217:51-2.
    PMID: 26603120 DOI: 10.1016/j.jbiotec.2015.11.009
    Pandoraea thiooxydans DSM 25325(T) is a thiosulfate-oxidizing bacterium isolated from rhizosphere soils of a sesame plant. Here, we present the first complete genome of P. thiooxydans DSM 25325(T). Several genes involved in thiosulfate oxidation and biodegradation of aromatic compounds were identified.
  18. See-Too WS, Chua KO, Lim YL, Chen JW, Convey P, Mohd Mohidin TB, et al.
    J Biotechnol, 2017 Jun 20;252:11-14.
    PMID: 28483443 DOI: 10.1016/j.jbiotec.2017.05.005
    The type strain Planococcus donghaensis JH1Tis a psychrotolerant and halotolerant bacterium with starch-degrading ability. Here, we determine the carbon utilization profile of P. donghaensis JH1Tand report the first complete genome of the strain. This study revealed the strain's ability to utilize pectin and d-galacturonic acid, and identified genes responsible for degradation of the polysaccharides. The genomic information provided may serve as a fundamental resource for full exploration of the biotechnological potential of P. donghaensis JH1T.
  19. Liew KJ, Teo SC, Shamsir MS, Sani RK, Chong CS, Chan KG, et al.
    3 Biotech, 2018 Aug;8(8):376.
    PMID: 30105201 DOI: 10.1007/s13205-018-1391-z
    Rhodothermaceae bacterium RA is a halo-thermophile isolated from a saline hot spring. Previously, the genome of this bacterium was sequenced using a HiSeq 2500 platform culminating in 91 contigs. In this report, we report on the resequencing of its complete genome using a PacBio RSII platform. The genome has a GC content of 68.3%, is 4,653,222 bp in size, and encodes 3711 genes. We are interested in understanding the carbohydrate metabolic pathway, in particular the lignocellulosic biomass degradation pathway. Strain RA harbors 57 glycosyl hydrolase (GH) genes that are affiliated with 30 families. The bacterium consists of cellulose-acting (GH 3, 5, 9, and 44) and hemicellulose-acting enzymes (GH 3, 10, and 43). A crude cell-free extract of the bacterium exhibited endoglucanase, xylanase, β-glucosidase, and β-xylosidase activities. The complete genome information coupled with biochemical assays confirms that strain RA is able to degrade cellulose and xylan. Therefore, strain RA is another excellent member of family Rhodothermaceae as a repository of novel and thermostable cellulolytic and hemicellulolytic enzymes.
  20. Lim YL, Yong D, Ee R, Krishnan T, Tee KK, Yin WF, et al.
    J Biotechnol, 2015 Nov 20;214:43-4.
    PMID: 26376471 DOI: 10.1016/j.jbiotec.2015.09.005
    Here, we present the first complete genome sequence of Serratia fonticola DSM 4576(T), a potential plant growth promoting (PGP) bacterium which confers solubilization of inorganic phosphate, indole-3-acetic acid production, hydrogen cyanideproduction, siderophore production and assimilation of ammonia through the glutamate synthase (GS/GOGAT) pathway. This genome sequence is valuable for functional genomics and ecological studies which are related to PGP and biocontrol activities.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links