Displaying publications 61 - 68 of 68 in total

Abstract:
Sort:
  1. Khoramnia A, Ebrahimpour A, Beh BK, Lai OM
    J Biomed Biotechnol, 2011;2011:702179.
    PMID: 21960739 DOI: 10.1155/2011/702179
    The lipase production ability of a newly isolated Acinetobacter sp. in submerged (SmF) and solid-state (SSF) fermentations was evaluated. The results demonstrated this strain as one of the rare bacterium, which is able to grow and produce lipase in SSF even more than SmF. Coconut oil cake as a cheap agroindustrial residue was employed as the solid substrate. The lipase production was optimized in both media using artificial neural network. Multilayer normal and full feed forward backpropagation networks were selected to build predictive models to optimize the culture parameters for lipase production in SmF and SSF systems, respectively. The produced models for both systems showed high predictive accuracy where the obtained conditions were close together. The produced enzyme was characterized as a thermotolerant lipase, although the organism was mesophile. The optimum temperature for the enzyme activity was 45°C where 63% of its activity remained at 70°C after 2 h. This lipase remained active after 24 h in a broad range of pH (6-11). The lipase demonstrated strong solvent and detergent tolerance potentials. Therefore, this inexpensive lipase production for such a potent and industrially valuable lipase is promising and of considerable commercial interest for biotechnological applications.
  2. Cheong LZ, Tan CP, Long K, Affandi Yusoff MS, Lai OM
    J Sci Food Agric, 2010 Oct;90(13):2310-7.
    PMID: 20661900 DOI: 10.1002/jsfa.4088
    Diacylglycerol (DAG), which has health-enhancing properties, is sometimes added to bakery shortening to produce baked products with enhanced physical functionality. Nevertheless, the quantity present is often too little to exert any positive healthful effects. This research aimed to produce bakery shortenings containing significant amounts of palm diacyglycerol (PDG). Physicochemical, textural and viscoelastic properties of the PDG bakery shortenings during 3 months storage were evaluated and compared with those of commercial bakery shortening (CS).
  3. Leong WF, Che Man YB, Lai OM, Long K, Misran M, Tan CP
    J Agric Food Chem, 2009 Sep 23;57(18):8426-33.
    PMID: 19694442 DOI: 10.1021/jf901853y
    The purpose of this study was to optimize the parameters involved in the production of water-soluble phytosterol microemulsions for use in the food industry. In this study, response surface methodology (RSM) was employed to model and optimize four of the processing parameters, namely, the number of cycles of high-pressure homogenization (1-9 cycles), the pressure used for high-pressure homogenization (100-500 bar), the evaporation temperature (30-70 degrees C), and the concentration ratio of microemulsions (1-5). All responses-particle size (PS), polydispersity index (PDI), and percent ethanol residual (%ER)-were well fit by a reduced cubic model obtained by multiple regression after manual elimination. The coefficient of determination (R(2)) and absolute average deviation (AAD) value for PS, PDI, and %ER were 0.9628 and 0.5398%, 0.9953 and 0.7077%, and 0.9989 and 1.0457%, respectively. The optimized processing parameters were 4.88 (approximately 5) homogenization cycles, homogenization pressure of 400 bar, evaporation temperature of 44.5 degrees C, and concentration ratio of microemulsions of 2.34 cycles (approximately 2 cycles) of high-pressure homogenization. The corresponding responses for the optimized preparation condition were a minimal particle size of 328 nm, minimal polydispersity index of 0.159, and <0.1% of ethanol residual. The chi-square test verified the model, whereby the experimental values of PS, PDI, and %ER agreed with the predicted values at a 0.05 level of significance.
  4. Loo JL, Lai OM, Long K, Ghazali HM
    World J Microbiol Biotechnol, 2007 Dec;23(12):1771-8.
    PMID: 27517833 DOI: 10.1007/s11274-007-9427-2
    Mycelium-bound lipase (MBL) was prepared using a strain of Geotrichum candidum isolated from local soil. At the time of maximum lipase activity (54 h), the mycelia to which the lipase was bound were harvested by filtration and centrifugation. Dry MBL was prepared by lyophilizing the mycelia obtained. The yield of MBL was 3.66 g/l with a protein content of 44.11 mg/g. The lipase activity and specific lipase activity were 22.59 and 510 U/g protein, respectively. The moisture content of the MBL was 3.85%. The activity of free (extracellular) lipase in the culture supernatant (after removal of mycelia) was less than 0.2 U/ml. The MBL showed selectivity for oleic acid over palmitic acid during hydrolysis of palm olein, indicating that the lipase from G. candidum displayed high substrate selectivity for unsaturated fatty acid containing a cis-9 double bond, even in crude form. This unique specificity of MBL could be a direct, simple and inexpensive way in the fats and oil industry for the selective hydrolysis or transesterification of cis-9 fatty acid residues in natural triacylglycerols.
  5. Lo SK, Cheong LZ, Arifin N, Tan CP, Long K, Yusoff MS, et al.
    J Agric Food Chem, 2007 Jul 11;55(14):5595-603.
    PMID: 17571899
    Diacylglycerol (DAG) and triacylglycerol (TAG) as responses on optimization of DAG production using a dual response approach of response surface methodology were investigated. This approach takes the molecular equilibrium of DAG into account and allows for the optimization of reaction conditions to achieve maximum DAG and minimum TAG yields. The esterification reaction was optimized with four factors using a central composite rotatable design. The following optimized conditions yielded 48 wt % DAG and 14 wt % TAG: reaction temperature of 66.29 degrees C, enzyme dosage of 4 wt %, fatty acid/glycerol molar ratio of 2.14, and reaction time of 4.14 h. Similar results were achieved when the process was scaled up to a 10 kg production in a pilot packed-bed enzyme reactor. Lipozyme RM IM did not show any significant activity losses or changes in fatty acid selectivity on DAG synthesis during the 10 pilot productions. However, lipozyme RM IM displayed higher selectivity toward the production of oleic acid-enriched DAG. The purity of DAG oil after purification was 92 wt %.
  6. Chong TM, Abdullah MA, Fadzillah NM, Lai OM, Lajis NH
    Plant Cell Rep, 2004 Jul;22(12):951-8.
    PMID: 15067428
    The effects of medium strategies [maintenance (M), intermediary (G), and production (P) medium] on cell growth, anthraquinone (AQ) production, hydrogen peroxide (H2O2) level, lipid peroxidation, and antioxidant vitamins in Morinda elliptica cell suspension cultures were investigated. These were compared with third-stage leaf and 1-month-old callus culture. With P medium strategy, cell growth at 49 g l(-1), intracellular AQ content at 42 mg g(-1) DW, and H2O2 level at 9 micromol g(-1) FW medium were the highest as compared to the others. However, the extent of lipid peroxidation at 40.4 nmol g(-1) FW and total carotenoids at 13.3 mg g(-1) FW for cultures in P medium were comparable to that in the leaf, which had registered sevenfold lower AQ and 2.2-fold lower H2O2 levels. Vitamin C content at 30-120 microg g(-1) FW in all culture systems was almost half the leaf content. On the other hand, vitamin E content was around 400-500 microg g(-1) FW in 7-day-old cultures from all medium strategies and reduced to 50-150 microg g(-1) FW on day 14 and 21; as compared to 60 microg g(-1) FW in callus and 200 microg g(-1) FW in the leaf. This study suggests that medium strategies and cell growth phase in cell culture could influence the competition between primary and secondary metabolism, oxidative stresses and antioxidative measures. When compared with the leaf metabolism, these activities are dynamic depending on the types and availability of antioxidants.
  7. Lo SK, Baharin BS, Tan CP, Lai OM
    J Chromatogr Sci, 2004 Mar;42(3):145-54.
    PMID: 15023251
    Separation of 1,2(2,3)- and 1,3-positional isomers of diacylglycerols (DAG) from vegetable oils by reversed-phase high-performance liquid chromatography (RP-HPLC) is investigated. The method is based on isocratic elution using 100% acetonitrile and UV detection at 205 nm. The following elution order of DAG molecular species is identified: 1,3-dilinolein < 1,2-dilinolein < 1,3-dimyristin < 1-oleoyl-3-linoleoyl-glycerol < 1,2-dimyristoyl-rac-glycerol < 1(2)-oleoyl-2(3)-linoleoyl-glycerol < 1-linolenoyl-3-stearoyl-glycerol < 1(2)-linolenoyl-2(3)-stearoyl-glycerol < 1,3-diolein < 1-palmitoyl-3-oleoyl-glycerol < 1,2-dioleoyl-sn-glycerol < 1(2)-palmitoyl-2(3)-oleoyl-glycerol < 1-linoleoyl-3-stearoyl-glycerol < 1,3-dipalmitin < 1(2)-linoleoyl-2(3)-stearoyl-glycerol < 1-oleoyl-3-stearoyl-glycerol < 1,2-dipalmitoyl-rac-glycerol < 1-palmitoyl-3-stearoyl-sn-glycerol < 1,3-distearin < 1,2-distearoyl-rac-glycerol. Linearity is observed over three orders of magnitude. Limits of detection and quantitation range 0.2-0.7 microg/mL for 1,3-dilinolein to 0.6-1.9 microg/mL for 1,2-dioleoyl-sn-glycerol, respectively. Precision and accuracy of the method are also demonstrated. The method is developed to separate mixtures of DAG molecular species produced from edible oils.
  8. Kimura Y, Maeda M, Kimupa M, Lai OM, Tan SH, Hon SM, et al.
    Biosci Biotechnol Biochem, 2002 Apr;66(4):820-7.
    PMID: 12036055
    A basic glycoprotein, which was recognized by IgE from oil palm pollinosis patients, has been purified from oil palm pollen (Elaeis guineensis Jacq.), which is a strong allergen and causes severe pollinosis in Malaysia and Singapore. Soluble proteins were extracted from defatted palm pollen with both Tris-HCl buffer (pH 7.8) and Na-acetate buffer (pH 4.0). The allergenic glycoprotein was purified from the total extract to homogeneity with 0.4% yield by a combination of DEAE- and CM-cellulose, SP-HPLC, and gel filtration. The purified oil palm pollen glycoprotein with molecular mass of 31 kDa was recognized by the beta1-2 xylose specific antibody, suggesting this basic glycoprotein bears plant complex type N-glycan(s). The palm pollen basic glycoprotein, designated Ela g Bd 31 K, was recognized by IgE of palm pollinosis patients, suggesting Ela g Bd 31 K should be one of the palm pollen allergens. The preliminary structural analysis of N-glycans linked to glycoproteins of palm pollens showed that the antigenic N-glycans having alpha1-3 fucose and alpha1-2 xylose residues (GlcNAc(2 to approximately 0)Man3Xyl1Fuc(1 to approximately 0)GlcNAc2) actually occur on the palm pollen glycoproteins, in addition to the high-mannose type structures (Man(9 to approximately 5)GlcNAc2).
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links