Displaying publications 61 - 66 of 66 in total

Abstract:
Sort:
  1. Moniruzzaman M, Islam MT, Misran N, Samsuzzaman M, Alam T, Chowdhury MEH
    Sci Rep, 2021 Jun 07;11(1):11950.
    PMID: 34099814 DOI: 10.1038/s41598-021-91432-8
    An inductively tuned modified split-ring resonator-based metamaterial (MTM) is presented in this article that provides multiple resonances covering S, C, X, and Ku-bands. The MTM is designed on an FR-4 substrate with a thickness of 1.5 mm and an electrical dimension of 0.063λ × 0.063λ where wavelength, λ is calculated at 2.38 GHz. The resonator part is a combination of three squared copper rings and one circular ring in which all the square rings are modified shaped, and the inner two rings are interconnected. The resonance frequency is tuned by adding inductive metal strips in parallel two vertical splits of the outer ring that causes a significant shift of resonances towards the lower frequencies and a highly effective medium ratio (EMR) of 15.75. Numerical simulation software CST microwave studio is used for the simulation and performance analysis of the proposed unit cell. The MTM unit cell exhibits six resonances of transmission coefficient (S21) at 2.38, 4.24, 5.98, 9.55, 12.1, and 14.34 GHz covering S, C, X, and Ku-bands with epsilon negative (ENG), near-zero permeability, and near-zero refractive index (NZI). The simulated result is validated by experiment with good agreement between them. The performance of the array of the unit cells is also investigated in both simulation and measurement. The equivalent circuit modeling has been accomplished using Advanced Design Software (ADS) that shows a similar S21 response compared to CST simulation. Noteworthy to mention that with the copper backplane, the same unit cell provides multiband absorption properties with four major absorption peaks of 99.6%, 95.7%, 99.9%, 92.7% with quality factors(Q-factor) of 28.4, 34.4, 23, and 32 at 3.98, 5.5, 11.73 and 13.47 GHz, respectively which can be applied for sensing and detecting purposes. The application of an array of the unit cells is investigated using it as a superstrate of an antenna that provides a 73% (average) increase of antenna gain. Due to its simple design, compact dimension with high EMR, ENG property with near-zero permeability, this multiband NZI metamaterial can be used for microwave applications, especially for multiband antenna gain enhancement.
  2. Warsi Khan H, Kaif Khan M, Moniruzzaman M, Al Mesfer MK, Danish M, Irshad K, et al.
    Environ Res, 2023 Aug 15;231(Pt 1):116058.
    PMID: 37178749 DOI: 10.1016/j.envres.2023.116058
    An emerging contaminant of concern in aqueous streams is naproxen. Due to its poor solubility, non-biodegradability, and pharmaceutically active nature, the separation is challenging. Conventional solvents employed for naproxen are toxic and harmful. Ionic liquids (ILs) have attracted great attention as greener solubilizing and separating agent for various pharmaceuticals. ILs have found extensive usage as solvents in nanotechnological processes involving enzymatic reactions and whole cells. The employment of ILs can enhance the effectiveness and productivity of such bioprocesses. To avoid cumbersome experimental screening, in this study, conductor like screening model for real solvents (COSMO-RS) was used to screen ILs. Thirty anions and eight cations from various families were chosen. Activity coefficient at infinite dilution, capacity, selectivity, performance index, molecular interactions using σ-profiles and interaction energies were used to make predictions about solubility. According to the findings, quaternary ammonium cations, highly electronegative, and food-grade anions will form excellent ionic liquid combinations for solubilizing naproxen and hence will be better separating agents. This research will contribute easy designing of ionic liquid-based separation technologies for naproxen. In different separation technologies, ionic liquids can be employed as extractants, carriers, adsorbents, and absorbents.
  3. Ahmad T, Bustam MA, Irfan M, Moniruzzaman M, Asghar HMA, Bhattacharjee S
    Biotechnol Appl Biochem, 2019 Jul;66(4):698-708.
    PMID: 31172593 DOI: 10.1002/bab.1787
    Phytosynthesis of gold nanoparticles (AuNPs) has achieved an indispensable significance due to the diverse roles played by biomolecules in directing the physiochemical characteristics of biosynthesized nanoparticles. Therefore, the precise identification of key bioactive compounds involved in producing AuNPs is vital to control their tunable characteristics for potential applications. Herein, qualitative and quantitative determination of key biocompounds contributing to the formation of AuNPs using aqueous Elaeis guineensis leaves extract is reported. Moreover, roles of phenolic compounds and flavonoids in reduction of Au3+ and stabilization of AuNPs have been elucidated by establishing a reaction mechanism. Fourier-transform infrared spectroscopy (FTIR) showed shifting of O─H stretching vibrations toward longer wavenumbers and C═O toward shorter wavenumbers due to involvement of polyphenolic compounds in biosynthesis and oxidation of polyphenolic into carboxylic compounds, respectively, which cape nanoparticles to inhibit the aggregation. Congruently, pyrolysis-gas chromatography-mass spectrometry revealed the major contribution of polyphenolic compounds in the synthesis of AuNPs, which was further endorsed by reduction of total phenolic and total flavonoids contents from 48.08 ± 1.98 to 9.59 ± 0.92 mg GAE/g and 32.02 ± 1.31 to 13.8 ± 0.97 mg CE/g within 60 Min, respectively. Based on experimental results, reaction mechanism explained the roles of phenolic compounds and flavonoids in producing spherical-shaped AuNPs.
  4. Islam MR, Islam MT, Moniruzzaman M, Samsuzzaman M, Arshad H
    Sci Rep, 2021 Apr 22;11(1):8784.
    PMID: 33888759 DOI: 10.1038/s41598-021-87958-6
    This paper represents a penta band square enclosed star-shaped modified split ring resonator (SRR) based single negative meta-atom absorber (MAA) for multi-band microwave regime applications. FR-4 low-cost material has been used as a substrate to make the MAA unit cell with 0.101λ0 × 0.101λ0 of electrical size, where λ0 is the wavelength calculated at the lower resonance frequency of 3.80 GHz. There are two outer square split ring and one inner star ring shape resonator of 0.035 mm thickness of copper placed on the one side, and another side of the substrate has full copper to construct the desired unit cell. The MAA unit cell provides five absorption peaks of 97.87%, 93.65%, 92.66%, 99.95%, and 99.86% at the frequencies of 3.80, 5.65, 8.45, 10.82, and 15.92 GHz, respectively, which covers S-, C-, X-, and Ku- bands. The properties of MAA have been investigated and analyzed in the E-, H-fields and surface current. The EMR and highest Q factor of the designed MAA is 9.87 and 30.41, respectively, and it shows a single negative (SNG) property. Different types of parametric analysis have been done to show the better performance of absorption. Advanced Designed System (ADS) software has been used for equivalent circuit to verify the simulated S11 result obtained from the CST-2019 software. Experimental outcomes of the MAA unit cell have a good deal with the simulated result and measured result of the 24 × 20 array of unit cells also shown. Since the unit cell provides superior EMR, excellent Q-factor, and highest absorption so the recommended MAA can be effectively used as a penta band absorber in microwave applications, like notch filtering, sensing, reducing the unintended noise generated with the copper component of the satellite and radar antennas.
  5. Islam MT, Moniruzzaman M, Alam T, Samsuzzaman M, Razouqi QA, Almutairi AF
    Sci Rep, 2021 Aug 19;11(1):16898.
    PMID: 34413377 DOI: 10.1038/s41598-021-96228-4
    In this paper, a meander-lines-based epsilon negative (ENG) metamaterial (MTM) with a high effective medium ratio (EMR) and near-zero refractive index (NZI) is designed and investigated for multiband microwave applications. The metamaterial unit cell is a modification of the conventional square split-ring resonator in which the meander line concept is utilized. The meander line helps to increase the electrical length of the rings and provides strong multiple resonances within a small dimension. The unit cell of proposed MTM is initiated on a low-cost FR4 substrate of 1.5 mm thick and electrical dimension of 0.06λ × 0.06λ, where wavelength, λ is calculated at the lowest resonance frequency (2.48 GHz). The MTM provides four major resonances of transmission coefficient (S21) at 2.48, 4.28, 9.36, and 13.7 GHz covering S, C, X, and Ku bands. It shows negative permittivity, near-zero permeability, and near-zero refractive index in the vicinity of these resonances. The equivalent circuit is designed and modeled in Advanced Design System (ADS) software. The simulated S21 of the MTM unit cell is compared with the measured one and both show close similarity. The array performance of the MTM is also evaluated by using 2 × 2, 4 × 4, and 8 × 8 arrays that show close resemblance with the unit cell. The MTM offers a high effective medium ratio (EMR) of 15.1, indicating the design's compactness. The frequency hopping characteristics of the proposed MTM is investigated by open and short-circuited the three outer rings split gaps by using three switches. Eight different combinations of the switching states provide eight different sets of multiband resonances within 2-18 GHz; those give the flexibility of using the proposed MTM operating in various frequency bands. For its small dimension, NZI, high EMR, and frequency hopping characteristics through switching, this metamaterial can be utilized for multiband microwave applications, especially to enhance the gain of multiband antennas.
  6. Moniruzzaman M, Islam MT, Hossain I, Soliman MS, Samsuzzaman M, Almalki SHA
    Sci Rep, 2021 Nov 08;11(1):21842.
    PMID: 34750440 DOI: 10.1038/s41598-021-01266-7
    In this paper, a tuned metamaterial (MTM) consisting of a symmetric split ring resonator is presented that exhibits epsilon negative (ENG), near zero permeability and refractive index properties for multiband microwave applications. The proposed metamaterial is constituted on a Rogers (RT-5880) substrate with 1.57 mm thickness and the electrical dimension of 0.14λ × 0.14λ, where wavelength, λ is calculated at 4.2 GHz. The symmetric resonating patch is subdivided into four equal and similar quartiles with two interconnecting split rings in each quartile. The quartiles are connected at the center of the substrate with a square metal strip with which four tuning metal strips are attached. These tuning metal strips are acted as spacers between four quartiles of the resonator patch. Numerical simulation of the proposed design is executed in CST microwave studio. The proposed MTM provides four resonances of transmission coefficient (S21) at 4.20 GHz, 10.14 GHz, 13.15 GHz, and 17.1 GHz covering C, X and Ku bands with negative permittivity, near zero permeability and refractive index. The calculated effective medium ratio (EMR) is 7.14 at 4.2 GHz indicates its compactness. The resonance frequencies are selective in nature which can be easily tuned by varying the length of the tuning metal stubs. The equivalent circuit of the proposed MTM is modelled in Advanced Design Software (ADS) that exhibits a similar S21 compared with CST simulation. Surface current, electric and magnetic fields are analyzed to explain the frequency tuning property and other performances of the MTM. Compact size, ENG with near zero permeability and refractive index along with frequency selectivity through tuning provides flexibility for frequency selective applications of this MTM in wireless communications.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links