A measurement of the double-differential inclusive jet cross section as a function of jet transverse momentum [Formula: see text] and absolute jet rapidity [Formula: see text] is presented. The analysis is based on proton-proton collisions collected by the CMS experiment at the LHC at a centre-of-mass energy of 13[Formula: see text]. The data samples correspond to integrated luminosities of 71 and 44[Formula: see text] for [Formula: see text] and [Formula: see text], respectively. Jets are reconstructed with the anti-[Formula: see text] clustering algorithm for two jet sizes, R, of 0.7 and 0.4, in a phase space region covering jet [Formula: see text] up to 2[Formula: see text] and jet rapidity up to [Formula: see text] = 4.7. Predictions of perturbative quantum chromodynamics at next-to-leading order precision, complemented with electroweak and nonperturbative corrections, are used to compute the absolute scale and the shape of the inclusive jet cross section. The cross section difference in R, when going to a smaller jet size of 0.4, is best described by Monte Carlo event generators with next-to-leading order predictions matched to parton showering, hadronisation, and multiparton interactions. In the phase space accessible with the new data, this measurement provides a first indication that jet physics is as well understood at [Formula: see text] as at smaller centre-of-mass energies.
A search for a massive resonance [Formula: see text]decaying into a W and a Higgs boson in the [Formula: see text] ([Formula: see text], [Formula: see text]) final state is presented. Results are based on data corresponding to an integrated luminosity of 19.7[Formula: see text] of proton-proton collisions at [Formula: see text] [Formula: see text], collected using the CMS detector at the LHC. For a high-mass ([Formula: see text]1[Formula: see text]) resonance, the two bottom quarks coming from the Higgs boson decay are reconstructed as a single jet, which can be tagged by placing requirements on its substructure and flavour. Exclusion limits at 95 % confidence level are set on the production cross section of a narrow resonance decaying into WH, as a function of its mass. In the context of a little Higgs model, a lower limit on the [Formula: see text] mass of 1.4[Formula: see text] is set. In a heavy vector triplet model that mimics the properties of composite Higgs models, a lower limit on the [Formula: see text] mass of 1.5[Formula: see text] is set. In the context of this model, the results are combined with related searches to obtain a lower limit on the [Formula: see text] mass of 1.8[Formula: see text], the most restrictive to date for decays to a pair of standard model bosons.
Jet multiplicity distributions in top quark pair ([Formula: see text]) events are measured in pp collisions at a centre-of-mass energy of 8 TeV with the CMS detector at the LHC using a data set corresponding to an integrated luminosity of 19.7[Formula: see text]. The measurement is performed in the dilepton decay channels ([Formula: see text], [Formula: see text], and [Formula: see text]). The absolute and normalized differential cross sections for [Formula: see text] production are measured as a function of the jet multiplicity in the event for different jet transverse momentum thresholds and the kinematic properties of the leading additional jets. The differential [Formula: see text] and [Formula: see text] cross sections are presented for the first time as a function of the kinematic properties of the leading additional [Formula: see text] jets. Furthermore, the fraction of events without additional jets above a threshold is measured as a function of the transverse momenta of the leading additional jets and the scalar sum of the transverse momenta of all additional jets. The data are compared and found to be consistent with predictions from several perturbative quantum chromodynamics event generators and a next-to-leading order calculation.
A measurement of the decorrelation of azimuthal angles between the two jets with the largest transverse momenta is presented for seven regions of leading jet transverse momentum up to 2.2[Formula: see text]. The analysis is based on the proton-proton collision data collected with the CMS experiment at a centre-of-mass energy of 8[Formula: see text] corresponding to an integrated luminosity of 19.7[Formula: see text]. The dijet azimuthal decorrelation is caused by the radiation of additional jets and probes the dynamics of multijet production. The results are compared to fixed-order predictions of perturbative quantum chromodynamics (QCD), and to simulations using Monte Carlo event generators that include parton showers, hadronization, and multiparton interactions. Event generators with only two outgoing high transverse momentum partons fail to describe the measurement, even when supplemented with next-to-leading-order QCD corrections and parton showers. Much better agreement is achieved when at least three outgoing partons are complemented through either next-to-leading-order predictions or parton showers. This observation emphasizes the need to improve predictions for multijet production.
A measurement of the cross section for the production of top quark-antiquark pairs ([Formula: see text]) in association with a vector boson V (W or Z) in proton-proton collisions at [Formula: see text][Formula: see text] is presented. The results are based on a dataset corresponding to an integrated luminosity of 19.5 fb[Formula: see text] recorded with the CMS detector at the LHC. The measurement is performed in three leptonic (e and [Formula: see text]) channels: a same-sign dilepton analysis targeting [Formula: see text] events, and trilepton and four-lepton analyses designed for [Formula: see text] events. In the same-sign dilepton channel, the [Formula: see text] cross section is measured as [Formula: see text], corresponding to a significance of 1.6 standard deviations over the background-only hypothesis. Combining the trilepton and four-lepton channels, a direct measurement of the [Formula: see text] cross section, [Formula: see text], is obtained with a significance of 3.1 standard deviations. The measured cross sections are compatible with standard model predictions within their experimental uncertainties. The inclusive [Formula: see text] process is observed with a significance of 3.7 standard deviations from the combination of all three leptonic channels.
Measurements are presented of associated production of a W boson and a charm quark ( W + c ) in proton-proton collisions at a center-of-mass energy of 13 Te . The data correspond to an integrated luminosity of 35.7 fb - 1 collected by the CMS experiment at the CERN LHC. The W bosons are identified by their decay into a muon and a neutrino. The charm quarks are tagged via the full reconstruction of D ∗ ( 2010 ) ± mesons that decay via D ∗ ( 2010 ) ± → D 0 + π ± → K ∓ + π ± + π ± . A cross section is measured in the fiducial region defined by the muon transverse momentum p T μ > 26 Ge , muon pseudorapidity | η μ | < 2.4 , and charm quark transverse momentum p T c > 5 Ge . The inclusive cross section for this kinematic range is σ ( W + c ) = 1026 ± 31 (stat) + 76 - 72 (syst) pb . The cross section is also measured differentially as a function of the pseudorapidity of the muon from the W boson decay. These measurements are compared with theoretical predictions and are used to probe the strange quark content of the proton.
A search in an all-jet final state for new massive resonances decaying to W W , W Z , or Z Z boson pairs using a novel analysis method is presented. The analysis is performed on data corresponding to an integrated luminosity of 77.3 fb - 1 recorded with the CMS experiment at the LHC at a centre-of-mass energy of 13 Te . The search is focussed on potential narrow-width resonances with masses above 1.2 Te , where the decay products of each W or Z boson are expected to be collimated into a single, large-radius jet. The signal is extracted using a three-dimensional maximum likelihood fit of the two jet masses and the dijet invariant mass, yielding an improvement in sensitivity of up to 30% relative to previous search methods. No excess is observed above the estimated standard model background. In a heavy vector triplet model, spin-1 Z ' and W ' resonances with masses below 3.5 and 3.8 Te , respectively, are excluded at 95% confidence level. In a bulk graviton model, upper limits on cross sections are set between 27 and 0.2 fb for resonance masses between 1.2 and 5.2 Te , respectively. The limits presented in this paper are the best to date in the dijet final state.
Measurements are reported of the WZ and ZZ production cross sections in proton-proton collisions at [Formula: see text][Formula: see text] in final states where one Z boson decays to b-tagged jets. The other gauge boson, either W or Z, is detected through its leptonic decay (either [Formula: see text], [Formula: see text] or [Formula: see text], [Formula: see text], or [Formula: see text]). The results are based on data corresponding to an integrated luminosity of 18.9 fb[Formula: see text] collected with the CMS detector at the Large Hadron Collider. The measured cross sections, [Formula: see text] and [Formula: see text], are consistent with next-to-leading order quantum chromodynamics calculations.
The normalised differential top quark-antiquark production cross section is measured as a function of the jet multiplicity in proton-proton collisions at a centre-of-mass energy of 7[Formula: see text] at the LHC with the CMS detector. The measurement is performed in both the dilepton and lepton+jets decay channels using data corresponding to an integrated luminosity of 5.0[Formula: see text]. Using a procedure to associate jets to decay products of the top quarks, the differential cross section of the [Formula: see text] production is determined as a function of the additional jet multiplicity in the lepton+jets channel. Furthermore, the fraction of events with no additional jets is measured in the dilepton channel, as a function of the threshold on the jet transverse momentum. The measurements are compared with predictions from perturbative quantum chromodynamics and no significant deviations are observed.
The cross section for [Formula: see text] production in the all-jets final state is measured in pp collisions at a centre-of-mass energy of 8 [Formula: see text] at the LHC with the CMS detector, in data corresponding to an integrated luminosity of 18.4 [Formula: see text]. The inclusive cross section is found to be [Formula: see text] [Formula: see text]. The normalized differential cross sections are measured as a function of the top quark transverse momenta, [Formula: see text], and compared to predictions from quantum chromodynamics. The results are reported at detector, parton, and particle levels. In all cases, the measured top quark [Formula: see text] spectra are significantly softer than theoretical predictions.
New sets of parameters ("tunes") for the underlying-event (UE) modelling of the pythia8, pythia6 and herwig++ Monte Carlo event generators are constructed using different parton distribution functions. Combined fits to CMS UE proton-proton ([Formula: see text]) data at [Formula: see text] and to UE proton-antiproton ([Formula: see text]) data from the CDF experiment at lower [Formula: see text], are used to study the UE models and constrain their parameters, providing thereby improved predictions for proton-proton collisions at 13[Formula: see text]. In addition, it is investigated whether the values of the parameters obtained from fits to UE observables are consistent with the values determined from fitting observables sensitive to double-parton scattering processes. Finally, comparisons are presented of the UE tunes to "minimum bias" (MB) events, multijet, and Drell-Yan ([Formula: see text] lepton-antilepton+jets) observables at 7 and 8[Formula: see text], as well as predictions for MB and UE observables at 13[Formula: see text].
Stringent limits are set on the long-lived lepton-like sector of the phenomenological minimal supersymmetric standard model (pMSSM) and the anomaly-mediated supersymmetry breaking (AMSB) model. The limits are derived from the results presented in a recent search for long-lived charged particles in proton-proton collisions, based on data collected by the CMS detector at a centre-of-mass energy of 8 TeV at the Large Hadron Collider. In the pMSSM parameter sub-space considered, 95.9 % of the points predicting charginos with a lifetime of at least 10 ns are excluded. These constraints on the pMSSM are the first obtained at the LHC. Charginos with a lifetime greater than 100 ns and masses up to about 800 GeV in the AMSB model are also excluded. The method described can also be used to set constraints on other models.
Measurements of the differential and double-differential Drell-Yan cross sections in the dielectron and dimuon channels are presented. They are based on proton-proton collision data at [Formula: see text] recorded with the CMS detector at the LHC and corresponding to an integrated luminosity of 19.7[Formula: see text]. The measured inclusive cross section in the [Formula: see text] peak region (60-120[Formula: see text]), obtained from the combination of the dielectron and dimuon channels, is [Formula: see text], where the statistical uncertainty is negligible. The differential cross section [Formula: see text] in the dilepton mass range 15-2000[Formula: see text] is measured and corrected to the full phase space. The double-differential cross section [Formula: see text] is also measured over the mass range 20 to 1500[Formula: see text] and absolute dilepton rapidity from 0 to 2.4. In addition, the ratios of the normalized differential cross sections measured at [Formula: see text] and 8[Formula: see text] are presented. These measurements are compared to the predictions of perturbative QCD at next-to-leading and next-to-next-to-leading (NNLO) orders using various sets of parton distribution functions (PDFs). The results agree with the NNLO theoretical predictions computed with fewz 3.1 using the CT10 NNLO and NNPDF2.1 NNLO PDFs. The measured double-differential cross section and ratio of normalized differential cross sections are sufficiently precise to constrain the proton PDFs.
The inclusive jet cross section for proton-proton collisions at a centre-of-mass energy of 7[Formula: see text] was measured by the CMS Collaboration at the LHC with data corresponding to an integrated luminosity of 5.0[Formula: see text]. The measurement covers a phase space up to 2[Formula: see text] in jet transverse momentum and 2.5 in absolute jet rapidity. The statistical precision of these data leads to stringent constraints on the parton distribution functions of the proton. The data provide important input for the gluon density at high fractions of the proton momentum and for the strong coupling constant at large energy scales. Using predictions from perturbative quantum chromodynamics at next-to-leading order, complemented with electroweak corrections, the constraining power of these data is investigated and the strong coupling constant at the Z boson mass [Formula: see text] is determined to be [Formula: see text], which is in agreement with the world average.
The normalized differential cross section for top quark pair ([Formula: see text]) production is measured in pp collisions at a centre-of-mass energy of 8[Formula: see text] at the CERN LHC using the CMS detector in data corresponding to an integrated luminosity of 19.7[Formula: see text]. The measurements are performed in the lepton[Formula: see text]jets ([Formula: see text][Formula: see text]jets) and in the dilepton ([Formula: see text], [Formula: see text], and [Formula: see text]) decay channels. The [Formula: see text] cross section is measured as a function of the kinematic properties of the charged leptons, the jets associated to b quarks, the top quarks, and the [Formula: see text] system. The data are compared with several predictions from perturbative quantum chromodynamic up to approximate next-to-next-to-leading-order precision. No significant deviations are observed relative to the standard model predictions.
Transverse momentum spectra of charged particles are measured by the CMS experiment at the CERN LHC in pPb collisions at [Formula: see text][Formula: see text], in the range [Formula: see text][Formula: see text] and pseudorapidity [Formula: see text] in the proton-nucleon center-of-mass frame. For [Formula: see text][Formula: see text], the charged-particle production is asymmetric about [Formula: see text], with smaller yield observed in the direction of the proton beam, qualitatively consistent with expectations from shadowing in nuclear parton distribution functions (nPDF). A pp reference spectrum at [Formula: see text][Formula: see text] is obtained by interpolation from previous measurements at higher and lower center-of-mass energies. The [Formula: see text] distribution measured in pPb collisions shows an enhancement of charged particles with [Formula: see text][Formula: see text] compared to expectations from the pp reference. The enhancement is larger than predicted by perturbative quantum chromodynamics calculations that include antishadowing modifications of nPDFs.
This paper presents distributions of topological observables in inclusive three- and four-jet events produced in pp collisions at a centre-of-mass energy of 7[Formula: see text] with a data sample collected by the CMS experiment corresponding to a luminosity of 5.1[Formula: see text]. The distributions are corrected for detector effects, and compared with several event generators based on two- and multi-parton matrix elements at leading order. Among the considered calculations, MadGraph interfaced with pythia6 displays the overall best agreement with data.
The first measurements of diboson production cross sections in proton-proton interactions at a center-of-mass energy of 5.02 TeV are reported. They are based on data collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 302 pb^{-1}. Events with two, three, or four charged light leptons (electrons or muons) in the final state are analyzed. The WW, WZ, and ZZ total cross sections are measured as σ_{WW}=37.0_{-5.2}^{+5.5}(stat)_{-2.6}^{+2.7}(syst) pb, σ_{WZ}=6.4_{-2.1}^{+2.5}(stat)_{-0.3}^{+0.5}(syst) pb, and σ_{ZZ}=5.3_{-2.1}^{+2.5}(stat)_{-0.4}^{+0.5}(syst) pb. All measurements are in good agreement with theoretical calculations at combined next-to-next-to-leading order quantum chromodynamics and next-to-leading order electroweak accuracy.
A search for long-lived particles (LLPs) produced in decays of standard model (SM) Higgs bosons is presented. The data sample consists of 137 fb^{-1} of proton-proton collisions at sqrt[s]=13 TeV, recorded at the LHC in 2016-2018. A novel technique is employed to reconstruct decays of LLPs in the end cap muon detectors. The search is sensitive to a broad range of LLP decay modes and to masses as low as a few GeV. No excess of events above the SM background is observed. The most stringent limits to date on the branching fraction of the Higgs boson to LLPs subsequently decaying to quarks and τ^{+}τ^{-} are found for proper decay lengths greater than 6, 20, and 40 m, for LLP masses of 7, 15, and 40 GeV, respectively.
The first evidence for X(3872) production in relativistic heavy ion collisions is reported. The X(3872) production is studied in lead-lead (Pb-Pb) collisions at a center-of-mass energy of sqrt[s_{NN}]=5.02 TeV per nucleon pair, using the decay chain X(3872)→J/ψπ^{+}π^{-}→μ^{+}μ^{-}π^{+}π^{-}. The data were recorded with the CMS detector in 2018 and correspond to an integrated luminosity of 1.7 nb^{-1}. The measurement is performed in the rapidity and transverse momentum ranges |y|<1.6 and 15