Displaying publications 61 - 65 of 65 in total

Abstract:
Sort:
  1. Chai, L.C., Fatimah, A.B., Ghazali, F.M., Lee, H.Y., Tunung, R., Shamsinar, A.T., et al.
    MyJurnal
    Antibiotic resistance in campylobacter is an emerging global public health problem after MRSA and VRE. Fluoroquinolone and macrolide resistance have been found to be more common in this world leading foodborne pathogen. A total of fifty-six isolates of Campylobacter jejuni obtained from raw vegetables
    which are consumed as ulam (salad) in Malaysia, were tested with 12 antibiotics used clinically and
    agriculturally. The resistance was determined using the disk diffusion method. Results were determined
    by hierarchic numerical methods to cluster strains and antibiotics according to similarity profiles. Fifty
    five C. jejuni isolates from different isolation sites were all clustered together into ten groups. This indicates that the commodities (raw salad vegetables/ulam) where the isolates originated might share a similar source of cross-contamination along the production route. All antibiotics tested correlated and there were four groupings reflecting their mode of actions. Generally, C. jejuni isolates were found to be highly resistant to erythromycin (91.1%) and tetracycline (85.7%). Both agents are popular antibiotics used clinically to treat bacterial infections. On the other hand, the C. jejuni isolates showed high percentage (80.4%) of resistance towards enrofloxacin, an extensively used antimicrobial agent in agriculture practices. This study showed that C. jejuni isolates were highly multi-resistance to as many as 10 antibiotics. Therefore, in terms of biosafety, the presence of antibiotic resistance strains in the food chain has raised concerns that the treatment of human infections will be compromised.
  2. Chai LC, Ghazali FM, Bakar FA, Lee HY, Suhaimi LR, Talib SA, et al.
    J Microbiol Biotechnol, 2009 Nov;19(11):1415-20.
    PMID: 19996696
    The aim of the present study was to examine the prevalence of thermophilic Campylobacter spp. (Campylobacter jejuni and Campylobacter coli) in soil, poultry manure, irrigation water, and freshly harvested vegetables from vegetable farms in Malaysia. C. jejuni was detected in 30.4% and 2.7% of the soil samples, 57.1% and 0% of the manure samples, and 18.8% and 3% of the vegetable samples from farm A and farm B, respectively, when using the MPNPCR method. Campylobacter spp. was not found in any of the irrigation water samples tested. Therefore, the present results indicate that the aged manure used by farm A was more contaminated than the composted manure used by farm B. Mostly, the leafy and root vegetables were contaminated. C. coli was not detected in any of the samples tested in the current study. Both farms tested in this study were found to be contaminated by campylobacters, thereby posing a potential risk for raw vegetable consumption in Malaysia. The present results also provide baseline data on Campylobacter contamination at the farm level.
  3. Chai LC, Lee HY, Ghazali FM, Abu Bakar F, Malakar PK, Nishibuchi M, et al.
    J Food Prot, 2008 Dec;71(12):2448-52.
    PMID: 19244897
    Campylobacter jejuni was found to occur at high prevalence in the raw salad vegetables examined. Previous reports describe cross-contamination involving meat; here we investigated the occurrence of cross-contamination and decontamination events in the domestic kitchen via C. jejuni-contaminated vegetables during salad preparation. This is the first report concerning quantitative cross-contamination and decontamination involving naturally contaminated produce. The study was designed to simulate the real preparation of salad in a household kitchen, starting with washing the vegetables in tap water, then cutting the vegetables on a cutting board, followed by slicing cucumber and blanching (heating in hot water) the vegetables in 85 degrees C water. Vegetables naturally contaminated with C. jejuni were used throughout the simulation to attain realistic quantitative data. The mean of the percent transfer rates for C. jejuni from vegetable to wash water was 30.1 to 38.2%; from wash water to cucumber, it was 26.3 to 47.2%; from vegetables to cutting board, it was 1.6 to 10.3%; and from cutting board to cucumber, it was 22.6 to 73.3%. The data suggest the wash water and plastic cutting board as potential risk factors in C. jejuni transmission to consumers. Washing of the vegetables with tap water caused a 0.4-log reduction of C. jejuni attached to the vegetables (most probable number/gram), while rapid blanching reduced the number of C. jejuni organisms to an undetectable level.
  4. Bilung LM, Radu S, Bahaman AR, Rahim RA, Napis S, Ling MW, et al.
    FEMS Microbiol Lett, 2005 Nov 1;252(1):85-8.
    PMID: 16216442
    This study aimed to determine the occurrence of Vibrio parahaemolyticus in cockles (Anadara granosa) at a harvesting area and to detect the presence of virulent strains carrying the thermostable direct hemolysin (tdh) and TDH-related hemolysin genes (trh) using PCR. Of 100 samples, 62 were positive for the presence of V. parahaemolyticus with an MPN (most probable number) value greater than 3.0 (>1100 MPN per g). The PCR analysis revealed 2 samples to be positive for the tdh gene and 11 to be positive for the trh gene. Hence, these results demonstrate the presence of pathogenic V. parahaemolyticus in cockles harvested in the study area and reveal the potential risk of illness associated with their consumption.
  5. Afsah-Hejri, L., Rukayadi, Y., Fouladynezhad, N., Son, R., Nakaguchi, Y., Nishibuchi, M.
    MyJurnal
    Listeria monocytogenes (L. monocytogenes) is a gram positive food-borne pathogen that is able to form biofilm on food factory surfaces. Formation of biofilm makes the bacteria much more resistance to environmental stresses such as disinfectant. The extracellular polymeric matrix (biofilm structure) which is mostly comprised of sticky extracellular polysaccharides (EPS) and proteins can protect bacteria in a harsh condition. The efficiency of four disinfectants on removing L. monocytogenes biofilm was investigated. Five concentration levels (100, 50, 25, 12.5, and 6.25%) of disinfectants were tested. In the microtitre assay, the optical density at 595 nm CV-OD595 value, was used to measure the amount of remained biofilm after 24 h. Results showed that disinfectants did not have significant effect on removing L. monocytogenes biofilm. Formation of L. monocytogenes biofilm significantly decreased the efficiency of disinfectants. Biofilm produced by strain number 9 showed higher resistance to disinfectant. Low concentrations (
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links