MAIN METHODS: A curcumin derivative (Z)-3-hydroxy-1-(2-hydroxyphenyl)-3-phenylprop-2-en-1-one (DK1) was synthesized and its cytotoxicity was tested on breast cancer cell MCF-7 and normal cell MCF-10A using MTT assay. Meanwhile, cell cycle regulation and apoptosis on MCF-7 cell were evaluated using flow cytometry. Regulation of cell cycle and apoptosis related genes expression was investigated by quantitative real time polymerase chain reaction (qRT-PCR), western blot and caspases activity analyses. Activation of oxidative stress on MCF-7 were evaluated by measuring ROS and GSH levels.
KEY FINDINGS: DK1 was found to possess selective cytotoxicity on breast cancer MCF-7 cell than normal MCF-10A cell. Flow cytometry cell cycle and AnnexinV/PI analyses reported that DK1 effectively arrested MCF-7 at G2/M phase and induced apoptosis after 72 h of incubation than curcumin. Upregulation of p53, p21 and downregulation of PLK-1 subsequently promote phosphorylation of CDC2 which were found contributed to the arrest of G2/M phase. Moreover, increased of reactive oxygen species and reduced of antioxidant glutathione level correlate with apoptosis observed with raised of cytochrome c and active caspase 9.
SIGNIFICANCE: DK1 was found to be more effective in inducing cell cycle arrest and apoptosis against MCF-7 cell with much higher selectivity index of MCF-10A/MCF-7 than curcumin, which might be contributed by the overexpression of p53 protein.
Methods: The cytotoxicity effect of rAF-IL12 against CT26 colon cancer cell line was determined by MTT assay. Based on the IC50 value from the anti-proliferative assay, further downward assays such as Annexin V FITC and cell cycle progression were carried out and measured by flow cytometry. Then, the in vivo study was conducted where the rAF-IL12 viral injections were given at the intra-tumoral site of the CT26 tumour-burden mice. At the end of the experiment, serum biochemical, T cell immunophenotyping, serum cytokine, histopathology of tumour and organ section, TUNEL assay, and Nanostring gene expression analysis were performed.
Results: The rAF-IL12 induced apoptosis of CT26 colon cancer cells in vitro as revealed in the Annexin V FITC analysis and also arrested the cancer cells progression at G1 phase of the cell cycle analysis. On the other hand, the rAF-IL12 significantly (p
METHODS: Organic acid and antioxidant profiles of Xeniji fermented foods were evaluated. Moreover, oral acute (5 g/kg body weight) and subchronic toxicity (0.1, 1 and 2 g/kg body weight) of Xeniji were tested on mice for 14 days and 30 days, respectively. Mortality, changes of body weight, organ weight and serum liver enzyme level were measured. Liver and spleen of mice from subchronic toxicity study were subjected to antioxidant and immunomodulation quantification.
RESULTS: Xeniji was rich in β-carotene, phytonadione, polyphenol, citric acid and essential amino acids. No mortality and significant changes of body weight and serum liver enzyme level were recorded for both oral acute and subchronic toxicity studies. Antioxidant level in the liver and immunity of Xeniji treated mice were significantly upregulated in dosage dependent manner.
CONCLUSION: Xeniji is a fermented functional food that rich in nutrients that enhanced antioxidant and immunity of mice. Xeniji that rich in β-carotene, phytonadione, polyphenol, citric acid and essential amino acids promote antioxidant and immunity in mice without causing toxic effect.