Displaying publications 61 - 66 of 66 in total

Abstract:
Sort:
  1. Ali NM, Yeap SK, Abu N, Lim KL, Ky H, Pauzi AZM, et al.
    Cancer Cell Int, 2017;17:30.
    PMID: 28239299 DOI: 10.1186/s12935-017-0400-3
    AIMS: Curcumin is a lead compound of the rhizomes of Curcuma longa and possess a broad range of pharmacological activities. Chemically, curcumin is 1,3-dicarbonyl class of compound, which exhibits keto-enol tautomerism. Despite of its strong biological properties, curcumin has yet been recommended as a therapeutic agent because of its poor bioavailability.

    MAIN METHODS: A curcumin derivative (Z)-3-hydroxy-1-(2-hydroxyphenyl)-3-phenylprop-2-en-1-one (DK1) was synthesized and its cytotoxicity was tested on breast cancer cell MCF-7 and normal cell MCF-10A using MTT assay. Meanwhile, cell cycle regulation and apoptosis on MCF-7 cell were evaluated using flow cytometry. Regulation of cell cycle and apoptosis related genes expression was investigated by quantitative real time polymerase chain reaction (qRT-PCR), western blot and caspases activity analyses. Activation of oxidative stress on MCF-7 were evaluated by measuring ROS and GSH levels.

    KEY FINDINGS: DK1 was found to possess selective cytotoxicity on breast cancer MCF-7 cell than normal MCF-10A cell. Flow cytometry cell cycle and AnnexinV/PI analyses reported that DK1 effectively arrested MCF-7 at G2/M phase and induced apoptosis after 72 h of incubation than curcumin. Upregulation of p53, p21 and downregulation of PLK-1 subsequently promote phosphorylation of CDC2 which were found contributed to the arrest of G2/M phase. Moreover, increased of reactive oxygen species and reduced of antioxidant glutathione level correlate with apoptosis observed with raised of cytochrome c and active caspase 9.

    SIGNIFICANCE: DK1 was found to be more effective in inducing cell cycle arrest and apoptosis against MCF-7 cell with much higher selectivity index of MCF-10A/MCF-7 than curcumin, which might be contributed by the overexpression of p53 protein.

  2. Najmuddin SUFS, Amin ZM, Tan SW, Yeap SK, Kalyanasundram J, Ani MAC, et al.
    Cancer Cell Int, 2020;20:278.
    PMID: 32612457 DOI: 10.1186/s12935-020-01372-y
    Background: Oncolytic viruses have emerged as an alternative therapeutic modality for cancer as they can replicate specifically in tumour cells and induce toxic effects leading to apoptosis. Despite the great potentials and promising results shown in multiple studies, it appears that their efficacy is still moderate and deemed as not sufficient in clinical studies. In addressing this issue, genetic/molecular engineering approach has paved its way to improve the therapeutic efficacy as observed in the case of herpes simplex virus (HSV) expressing granulocyte-macrophage colony-stimulating factor (GM-CSF). This study aimed to explore the cytotoxicity effects of recombinant NDV strain AF2240-i expressing interleukin-12 (rAF-IL12) against CT26 colon cancer cells.

    Methods: The cytotoxicity effect of rAF-IL12 against CT26 colon cancer cell line was determined by MTT assay. Based on the IC50 value from the anti-proliferative assay, further downward assays such as Annexin V FITC and cell cycle progression were carried out and measured by flow cytometry. Then, the in vivo study was conducted where the rAF-IL12 viral injections were given at the intra-tumoral site of the CT26 tumour-burden mice. At the end of the experiment, serum biochemical, T cell immunophenotyping, serum cytokine, histopathology of tumour and organ section, TUNEL assay, and Nanostring gene expression analysis were performed.

    Results: The rAF-IL12 induced apoptosis of CT26 colon cancer cells in vitro as revealed in the Annexin V FITC analysis and also arrested the cancer cells progression at G1 phase of the cell cycle analysis. On the other hand, the rAF-IL12 significantly (p 

  3. Boo L, Ho WY, Ali NM, Yeap SK, Ky H, Chan KG, et al.
    Int J Biol Sci, 2016;12(4):427-45.
    PMID: 27019627 DOI: 10.7150/ijbs.12777
    Breast cancer is the second leading cause of cancer-related mortality worldwide as most patients often suffer cancer relapse. The reason is often attributed to the presence of cancer stem cells (CSCs). Recent studies revealed that dysregulation of microRNA (miRNA) are closely linked to breast cancer recurrence and metastasis. However, no specific study has comprehensively characterised the CSC characteristic and miRNA transcriptome in spheroid-enriched breast cells. This study described the generation of spheroid MCF-7 cell in serum-free condition and the comprehensive characterisation for their CSC properties. Subsequently, miRNA expression differences between the spheroid-enriched CSC cells and their parental cells were evaluated using next generation sequencing (NGS). Our results showed that the MCF-7 spheroid cells were enriched with CSCs properties, indicated by the ability to self-renew, increased expression of CSCs markers, and increased resistance to chemotherapeutic drugs. Additionally, spheroid-enriched CSCs possessed greater cell proliferation, migration, invasion, and wound healing ability. A total of 134 significantly (p<0.05) differentially expressed miRNAs were identified between spheroids and parental cells using miRNA-NGS. MiRNA-NGS analysis revealed 25 up-regulated and 109 down-regulated miRNAs which includes some miRNAs previously reported in the regulation of breast CSCs. A number of miRNAs (miR-4492, miR-4532, miR-381, miR-4508, miR-4448, miR-1296, and miR-365a) which have not been previously reported in breast cancer were found to show potential association with breast cancer chemoresistance and self-renewal capability. The gene ontology (GO) analysis showed that the predicted genes were enriched in the regulation of metabolic processes, gene expression, DNA binding, and hormone receptor binding. The corresponding pathway analyses inferred from the GO results were closely related to the function of signalling pathway, self-renewability, chemoresistance, tumorigenesis, cytoskeletal proteins, and metastasis in breast cancer. Based on these results, we proposed that certain miRNAs identified in this study could be used as new potential biomarkers for breast cancer stem cell diagnosis and targeted therapy.
  4. Zulkawi N, Ng KH, Zamberi R, Yeap SK, Satharasinghe D, Jaganath IB, et al.
    BMC Complement Altern Med, 2017 Jun 30;17(1):344.
    PMID: 28666436 DOI: 10.1186/s12906-017-1845-6
    BACKGROUND: Xeniji, produced by fermenting various types of foods with lactic acid bacteria and yeast, has been commonly consumed as functional food. However, nutrition value, bioactivities and safety of different fermented products maybe varies.

    METHODS: Organic acid and antioxidant profiles of Xeniji fermented foods were evaluated. Moreover, oral acute (5 g/kg body weight) and subchronic toxicity (0.1, 1 and 2 g/kg body weight) of Xeniji were tested on mice for 14 days and 30 days, respectively. Mortality, changes of body weight, organ weight and serum liver enzyme level were measured. Liver and spleen of mice from subchronic toxicity study were subjected to antioxidant and immunomodulation quantification.

    RESULTS: Xeniji was rich in β-carotene, phytonadione, polyphenol, citric acid and essential amino acids. No mortality and significant changes of body weight and serum liver enzyme level were recorded for both oral acute and subchronic toxicity studies. Antioxidant level in the liver and immunity of Xeniji treated mice were significantly upregulated in dosage dependent manner.

    CONCLUSION: Xeniji is a fermented functional food that rich in nutrients that enhanced antioxidant and immunity of mice. Xeniji that rich in β-carotene, phytonadione, polyphenol, citric acid and essential amino acids promote antioxidant and immunity in mice without causing toxic effect.

  5. Rahman HS, Rasedee A, How CW, Zeenathul NA, Chartrand MS, Yeap SK, et al.
    Int J Nanomedicine, 2015;10:1649-66.
    PMID: 25767386 DOI: 10.2147/IJN.S67113
    Cancer nanotherapy is progressing rapidly with the introduction of many innovative drug delivery systems to replace conventional therapy. Although the antitumor activity of zerumbone (ZER) has been reported, there has been no information available on the effect of ZER-loaded nanostructured lipid carrier (NLC) (ZER-NLC) on murine leukemia cells. In this study, the in vitro and in vivo effects of ZER-NLC on murine leukemia induced with WEHI-3B cells were investigated. The results from 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide, Hoechst 33342, Annexin V, cell cycle, and caspase activity assays showed that the growth of leukemia cells in vitro was inhibited by ZER-NLC. In addition, outcomes of histopathology, transmission electron microscopy, and Tdt-mediated dUTP nick-end labeling analyses revealed that the number of leukemia cells in the spleen of BALB/c leukemia mice significantly decreased after 4 weeks of oral treatment with various doses of ZER-NLC. Western blotting and reverse-transcription quantitative polymerase chain reaction assays confirmed the antileukemia effects of ZER-NLC. In conclusion, ZER-NLC was shown to induce a mitochondrial-dependent apoptotic pathway in murine leukemia. Loading of ZER in NLC did not compromise the anticancer effect of the compound, suggesting ZER-NLC as a promising and effective delivery system for treatment of cancers.
  6. Kared H, Tan SW, Lau MC, Chevrier M, Tan C, How W, et al.
    Nat Commun, 2020 02 10;11(1):821.
    PMID: 32041953 DOI: 10.1038/s41467-020-14442-6
    The diversity of the naïve T cell repertoire drives the replenishment potential and capacity of memory T cells to respond to immune challenges. Attrition of the immune system is associated with an increased prevalence of pathologies in aged individuals, but whether stem cell memory T lymphocytes (TSCM) contribute to such attrition is still unclear. Using single cells RNA sequencing and high-dimensional flow cytometry, we demonstrate that TSCM heterogeneity results from differential engagement of Wnt signaling. In humans, aging is associated with the coupled loss of Wnt/β-catenin signature in CD4 TSCM and systemic increase in the levels of Dickkopf-related protein 1, a natural inhibitor of the Wnt/β-catenin pathway. Functional assays support recent thymic emigrants as the precursors of CD4 TSCM. Our data thus hint that reversing TSCM defects by metabolic targeting of the Wnt/β-catenin pathway may be a viable approach to restore and preserve immune homeostasis in the context of immunological history.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links