Displaying publications 61 - 80 of 136 in total

Abstract:
Sort:
  1. Yeo CI, Halim SN, Ng SW, Tan SL, Zukerman-Schpector J, Ferreira MA, et al.
    Chem Commun (Camb), 2014 Jun 7;50(45):5984-6.
    PMID: 24763907 DOI: 10.1039/c4cc02040e
    Evidence for C-H···π(CuCl···HNCS) interactions, i.e. C-H···π(quasi-chelate ring) where a six-membered quasi-chelate ring is closed by an N-H···Cl hydrogen bond, is presented based on crystal structure analyses of (Ph3P)2Cu[ROC(=S)N(H)Ph]Cl. Similar intramolecular interactions are identified in related literature structures. Calculations suggest that the energy of attraction provided by such interactions approximates 3.5 kcal mol(-1).
  2. Burrett S, Taylor DK, Tiekink ER
    PMID: 25161551 DOI: 10.1107/S1600536814012938
    The title compound, C15H24O2 [systematic name: (4S,4aR,6R,8aR)-4a-hy-droxy-4,8a-dimethyl-6-(prop-1-en-2-yl)octahydro-naphthalen-1(2H)-one], features two edge-shared six-membered rings with the hydroxyl and methyl substituents at this bridge being trans. One adopts a flattened chair conformation with the C atoms bearing the carbonyl and methyl substituents lying 0.5227 (16) and 0.6621 (15) Å, respectively, above and below the mean plane through the remaining four C atoms (r.m.s. deviation = 0.0145 Å). The second ring, bearing the prop-1-en-2-yl group, has a chair conformation. Supra-molecular helical chains along the b axis are found in the crystal packing, which are sustained by hy-droxy-carbonyl O-H⋯O hydrogen bonding.
  3. Burrett S, Taylor DK, Tiekink ER
    Acta Crystallogr Sect E Struct Rep Online, 2014 Jul 1;70(Pt 7):o776-7.
    PMID: 25161564 DOI: 10.1107/S1600536814013543
    Four independent mol-ecules (A-D) comprise the asymmetric unit of the title compound, C15H26O2, which differ only in the relative orientations of the terminal -C(Me)2OH groups [e.g. the range of Cmethyl-ene-Cmethine-Cquaternary-Ohy-droxy torsion angles is 52.7 (7)-57.1 (6)°, where the Cmethyl-ene atom is bound to an epoxide C atom]. The five-membered rings adopt envelope conformations, with the methyl-ene C atom adjacent to the methine C atom being the flap atom in each case. In each mol-ecule, the conformation of the seven-membered ring is a half-chair, with the Cmethyl-ene-Cmethine bond, flanked by methyl-ene C atoms, being the back of the chair. Supra-molecular helical chains along the b axis are found in the crystal packing, sustained by hy-droxy-epoxide O-H⋯O hydrogen bonding. Mol-ecules of A self-associate into a chain as do those of D. A third independent chain comprising B and C mol-ecules is also formed. The studied crystal is a pseudo-merohedral twin (minor component ca 21%).
  4. Akhmad Aznan AM, Abdullah Z, Tiekink ER
    PMID: 25161500 DOI: 10.1107/S1600536814011532
    The 1:1 co-crystallization of 1,4-di-aza-bicyclo-[2.2.2]octane (DABCO) with 4-nitro-benzoic acid in ethanol-water (3/1) gave the salt dihydrate C6H13N2 (+)·C7H4NO4 (-)·2H2O, (1), whereas from methanol, the salt C6H14N2 (2+)·2C7H4NO4 (-), (2), was isolated. In (1), the cation and anion are linked by a strong N-H⋯O hydrogen bond, and the carboxyl-ate anion is close to planar [dihedral angle between terminal residues = 6.83 (9)°]. In (2), a three-ion aggregate is assembled by two N-H⋯O hydrogen bonds, and the carboxyl-ate anions are again close to planar [dihedral angles between terminal residues = 1.7 (3) and 5.9 (3)°]. Through the inter-vention of solvent water mol-ecules, which self-assemble into helical supra-molecular chains along the b axis, the three-dimensional architecture in (1) is stabilized by water-DABCO O-H⋯N and water-carboxyl-ate O-H⋯O hydrogen bonds, with additional stability afforded by C-H⋯O inter-actions. The global crystal structure comprises alternating layers of water mol-ecules and ion pairs stacked along the c axis. In the crystal of (2), the three-ion aggregates are assembled into a three-dimensional architecture by a large number of methyl-ene-carboxyl-ate/nitro C-H⋯O inter-actions as well as π-π contacts between inversion-related benzene rings [inter-centroid distances = 3.5644 (16) and 3.6527 (16) Å]. The cations and anions assemble into alternating layers along the c axis.
  5. Aznan AM, Abdullah Z, Lee VS, Tiekink ER
    Acta Crystallogr Sect E Struct Rep Online, 2014 Aug 1;70(Pt 8):58-61.
    PMID: 25249854 DOI: 10.1107/S1600536814012227
    The title compound, C12H11N3O2, is a second monoclinic polymorph (P21, with Z' = 4) of the previously reported monoclinic (P21/c, with Z' = 2) form [Akhmad Aznan et al. (2010 ▶). Acta Cryst. E66, o2400]. Four independent mol-ecules comprise the asymmetric unit, which have the common features of a syn disposition of the pyridine N atom and the toluene ring, and an intra-molecular amine-nitro N-H⋯O hydrogen bond. The differences between mol-ecules relate to the dihedral angles between the rings which range from 2.92 (19) to 26.24 (19)°. The geometry-optimized structure [B3LYP level of theory and 6-311 g+(d,p) basis set] has the same features except that the entire mol-ecule is planar. In the crystal, the three-dimensional architecture is consolidated by a combination of C-H⋯O, C-H⋯π, nitro-N-O⋯π and π-π inter-actions [inter-centroid distances = 3.649 (2)-3.916 (2) Å].
  6. Zukerman-Schpector J, Maganhi SH, Moran PJ, de Paula BR, Nucci PR, Tiekink ER
    Acta Crystallogr Sect E Struct Rep Online, 2014 Sep 1;70(Pt 9):o1020-1.
    PMID: 25309202 DOI: 10.1107/S1600536814018327
    In the title compound, C17H15NO4, the conformation about the C=C double bond [1.348 (2) Å] is E with the ketone group almost co-planar [C-C-C-C torsion angle = 7.2 (2)°] but the phenyl group twisted away [C-C-C-C = 160.93 (17)°]. The terminal aromatic rings are almost perpendicular to each other [dihedral angle = 81.61 (9)°] giving the mol-ecule an overall U-shape. The crystal packing feature benzene-C-H⋯O(ketone) contacts that lead to supra-molecular helical chains along the b axis. These are connected by π-π inter-actions between benzene and phenyl rings [inter-centroid distance = 3.6648 (14) Å], resulting in the formation of a supra-molecular layer in the bc plane.
  7. Caracelli I, Maganhi SH, Moran PJ, de Paula BR, Delling FN, Tiekink ER
    Acta Crystallogr Sect E Struct Rep Online, 2014 Sep 01;70(Pt 9):o1051-2.
    PMID: 25309220 DOI: 10.1107/S1600536814018819
    In the title compound, C17H14N2O6, the conformation about the C=C double bond [1.345 (2) Å] is E, with the ketone moiety almost coplanar [C-C-C-C torsion angle = 9.5 (2)°] along with the phenyl ring [C-C-C-C = 5.9 (2)°]. The aromatic rings are almost perpendicular to each other [dihedral angle = 86.66 (7)°]. The 4-nitro moiety is approximately coplanar with the benzene ring to which it is attached [O-N-C-C = 4.2 (2)°], whereas the one in the ortho position is twisted [O-N-C-C = 138.28 (13)°]. The mol-ecules associate via C-H⋯O inter-actions, involving both O atoms from the 2-nitro group, to form a helical supra-molecular chain along [010]. Nitro-nitro N⋯O inter-actions [2.8461 (19) Å] connect the chains into layers that stack along [001].
  8. Zukerman-Schpector J, Caracelli I, Stefani HA, Khan AN, Tiekink ER
    Acta Crystallogr Sect E Struct Rep Online, 2014 Oct 1;70(Pt 10):o1122-3.
    PMID: 25484707 DOI: 10.1107/S1600536814020832
    In the title compound, C15H20BrNO2, there are two independent mol-ecules (A and B) comprising the asymmetric unit and these adopt very similar conformations. In A, the dihedral angle between the CO2 and MeC=CMe2 groups is 80.7 (3)°, and these make dihedral angles of 3.5 (3) and 84.09 (16)°, respectively, with the bromo-benzene ring. The equivalent dihedral angles for mol-ecule B are 78.4 (3), 2.1 (3) and 78.37 (12)°, respectively. The most prominent inter-actions in the crystal packing are amine-N-H⋯O(carbon-yl) hydrogen bonds between the two independent mol-ecules, resulting in non-centrosymmetric ten-membered {⋯OC2NH}2 synthons. Statistical disorder is noted for each of the terminal methyl groups of the ethyl residues.
  9. Tiekink ER
    Chem Commun (Camb), 2014 Oct 4;50(76):11079-82.
    PMID: 25130670 DOI: 10.1039/c4cc04972a
    In this Viewpoint, the impact of the paper published by Gautam R. Desiraju and Angelo Gavezzotti (J. Chem. Soc., Chem. Commun., 1989, 621) upon the development of Crystal Engineering, now recognised a key discipline in contemporary chemical/pharmaceutical/materials science, is discussed.
  10. Low ML, Ravoof TB, Tahir MI, Crouse KA, Tiekink ER
    Acta Crystallogr Sect E Struct Rep Online, 2014 Nov 1;70(Pt 11):o1207-8.
    PMID: 25484832 DOI: 10.1107/S1600536814023228
    In the title salt of an S-substituted di-thio-carbazate, C16H16N3S2 (+)·Cl(-), the dihedral angles between the almost planar (r.m.s deviation = 0.005 Å) central CN2S2 residue and the terminal pyridinium and phenyl rings are 80.09 (11) and 3.82 (11)°, respectively, indicating the cation has an L-shape; the amine H and thione S atoms are syn. The conformation about each of the imine [1.376 (3) Å] and ethene [1.333 (4) Å] bonds is E. The shortened C-C bond [1.444 (4) Å] linking the double bonds is consistent with conjugation in this part of the mol-ecule. In the crystal, supra-molecular layers with a jagged topology are formed by charged-assisted amine-H⋯Cl(-) and pyridinium-N(+)-H⋯Cl(-) hydrogen bonds. The layers stack along the a axis with no specific directional inter-actions between them.
  11. Otero-de-la-Roza A, Luaña V, Tiekink ER, Zukerman-Schpector J
    J Chem Theory Comput, 2014 Nov 11;10(11):5010-9.
    PMID: 26584384 DOI: 10.1021/ct500832g
    Noncovalent interactions are prevalent in crystal packing and supramolecular chemistry. Directional noncovalent interactions such as donor-acceptor bonds (e.g., hydrogen, chalcogen, and pnictogen bonds) as well as nondirectional forces (such as dispersion) come together to stabilize supramolecular assemblies by striking a delicate energetic balance. Typically, a two-pronged approach employing experimental X-ray structures and gas phase quantum chemical modeling has been used to understand and design supramolecular architectures. Drawing from recent advances in molecular crystal modeling with dispersion corrected density functional theory (DFT), we propose in this article a combination of qualitative noncovalent index (NCI) analysis and periodic and gas phase DFT calculations on substitutional crystal analogues to unravel the dominant interactions in a particular crystal packing. We illustrate the possibilities of this approach by studying three crystal packings of epoxydihydroarsanthrene analogues that present a complex combination of donor-acceptor interactions including pnictogen-pnictogen, pnictogen-π, and pnictogen-chalcogen. We show that, in these crystals, the chalcogen-pnictogen interaction dominates over the pnictogen-pnictogen and pnictogen-π. In the latter, the role of donor and acceptor is reversed depending on the interacting moieties. Multiple chalcogen-pnictogen interactions necessitate larger donor atoms, such as sulfur. These observations explain and rationalize the experimentally observed crystal structures.
  12. Zukerman-Schpector J, Madureira LS, Wulf GD, Stefani HA, Vasconcelos SN, Ng SW, et al.
    Molecules, 2014;19(2):1990-2003.
    PMID: 24531216 DOI: 10.3390/molecules19021990
    Two independent molecules that differ in terms of rotation about the central S-N bond comprise the asymmetric unit of the title compound 1. The molecules have a V-shape with the dihedral angles between the fused ring system and benzene ring being 79.08(6)° and 72.83(5)°, respectively. The packing is mostly driven by p···p interactions occurring between the tolyl ring of one molecule and the C6 ring of the indole fused ring system of the other. DFT and IRC calculations for these and related 1-(arylsulfonyl)indole molecules showed that the rotational barrier about the S-N bond between conformers is within the 2.5-5.5 kcal/mol range. Crystal data for C16H13NO3S (1): Mr = 299.33, space group Pna21, a = 19.6152(4) Å, b = 11.2736(4) Å, c = 12.6334(3) Å, V = 2793.67(13) Å3, Z = 8, Z' = 2, R = 0.034.
  13. Zukerman-Schpector J, Caracelli I, Stefani HA, Shamim A, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2015 Jan 1;71(Pt 1):o53-4.
    PMID: 25705505 DOI: 10.1107/S205698901402564X
    In the title compound, C12H15IO7, the 3,4-di-hydro-2H-pyran ring is in a distorted half-boat conformation with the atom bearing the acet-yloxy group adjacent to the C atom bearing the methyl-acetate group lying 0.633 (6) Å above the plane of the remaining ring atoms (r.m.s. deviation = 0.0907 Å). In the crystal, mol-ecules are linked into a supra-molecular chain along the a axis through two C-H⋯O inter-actions to the same acceptor carbonyl O atom; these chains pack with no specific inter-molecular inter-actions between them.
  14. Zukerman-Schpector J, Olivato PR, Traesel HJ, Valença J, Rodrigues DN, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2015 Jan 1;71(Pt 1):o3-4.
    PMID: 25705490 DOI: 10.1107/S205698901402550X
    In the title β-thio-carbonyl compound, C16H16O2S, the carbonyl and meth-oxy O atoms are approximately coplanar [O-C-C-O torsion angle = -18.2 (5)°] and syn to each other, and the tolyl ring is orientated to lie over them. The dihedral angle between the planes of the two rings is 44.03 (16)°. In the crystal, supra-molecular chains are formed along the c axis mediated by C-H⋯O inter-actions involving methine and methyl H atoms as donors, with the carbonyl O atom accepting both bonds; these pack with no specific inter-molecular inter-actions between them.
  15. Salam MA, Hussein MA, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2015 Jan 1;71(Pt 1):58-61.
    PMID: 25705451 DOI: 10.1107/S2056989014026498
    The title compound, C9H11N3O2S, is a second monoclinic (P21/c) polymorph of the previously reported Cc form [Tan et al. (2008b ▶). Acta Cryst. E64, o2224]. The mol-ecule is non-planar, with the dihedral angle between the N3CS residue (r.m.s. deviation = 0.0816 Å) and the benzene ring being 21.36 (4)°. The conformation about the C=N bond [1.292 (2) Å] is E, the two N-bound H atoms are anti, and the inner hy-droxy O-bound and outer amide N-bound H atoms form intra-molecular hydrogen bonds to the imine N atom. Crucially, the H atom of the outer hy-droxy group is approximately syn to the H atom of the benzene C atom connecting the two C atoms bearing the hy-droxy substituents. This arrangement enables the formation of supra-molecular tubes aligned along [010] and sustained by N-H⋯O, O-H⋯S and N-H⋯S hydrogen bonds; the tubes pack with no specific inter-actions between them. While the mol-ecular structure in the Cc form is comparable, the H atom of the outer hy-droxy group is approximately anti, rather than syn. This different orientation leads to the formation a three-dimensional architecture based on N-H⋯O and O-H⋯S hydrogen bonds.
  16. Caracelli I, Maganhi SH, Stefani HA, Gueogjian K, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2015 Feb 1;71(Pt 2):o90-1.
    PMID: 25878887 DOI: 10.1107/S2056989014027790
    The coumarin ring system in the title asymmetric alkyne, C18H12O2, is approximately planar (r.m.s. deviation of the 11 non-H atoms = 0.048 Å), and is inclined with respect to the methyl-benzene ring, forming a dihedral angle of 33.68 (4)°. In the crystal, supra-molecular zigzag chains along the c-axis direction are formed via weak C-H⋯O hydrogen bonds, and these are connected into double layers via weak C-H⋯π inter-actions; these stack along the a axis.
  17. Zukerman-Schpector J, Caracelli I, Stefani HA, Gozhina O, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2015 Mar 1;71(Pt 3):o167-8.
    PMID: 25844230 DOI: 10.1107/S2056989015002455
    In the title compound, C11H12O2S2, two independent but virtually superimposable mol-ecules, A and B, comprise the asymmetric unit. In each mol-ecule, the 1,3-di-thiane ring has a chair conformation with the 1,4-disposed C atoms being above and below the plane through the remaining four atoms. The substituted benzene ring occupies an equatorial position in each case and forms dihedral angles of 85.62 (9) (mol-ecule A) and 85.69 (8)° (mol-ecule B) with the least-squares plane through the 1,3-di-thiane ring. The difference between the mol-ecules rests in the conformation of the five-membered 1,3-dioxole ring which is an envelope in mol-ecule A (the methyl-ene C atom is the flap) and almost planar in mol-ecule B (r.m.s. deviation = 0.046 Å). In the crystal, mol-ecules of A self-associate into supra-molecular zigzag chains (generated by glide symmetry along the c axis) via methyl-ene C-H⋯π inter-actions. Mol-ecules of B form similar chains. The chains pack with no specific directional inter-molecular inter-actions between them.
  18. Camargo LR, Zukerman-Schpector J, Deobald AM, Braga AL, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2015 Mar 1;71(Pt 3):o200-1.
    PMID: 25844248 DOI: 10.1107/S2056989015003242
    Two independent mol-ecules, A and B, comprise the asymmetric unit of the title compound, C20H21N3OSe. While the benzene ring directly bound to the central triazole ring is inclined to the same extent in both mol-ecules [dihedral angles = 40.41 (12) (mol-ecule A) and 44.14 (12)° (B)], greater differences are apparent in the dihedral angles between the Se-bound rings, i.e. 74.28 (12) (mol-ecule A) and 89.91 (11)° (B). Close intra-molecular Se⋯N inter-actions of 2.9311 (18) (mol-ecule A) and 2.9482 (18) Å (B) are noted. In the crystal, supra-molecular chains along the a axis are formed via O-H⋯N hydrogen bonding. These are connected into layers via C-H⋯O and C-H⋯N inter-actions; these stack along (01-1) without directional inter-molecular inter-actions between them.
  19. Zukerman-Schpector J, Caracelli I, Stefani HA, Gozhina O, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2015 Mar 1;71(Pt 3):o179-80.
    PMID: 25844236 DOI: 10.1107/S2056989015002832
    In the title compound, C10H11BrS2, the 1,3-di-thiane ring has a chair conformation with the 1,4-disposed C atoms being above and below the remaining four atoms. The bromo-benzene ring occupies an equatorial position and forms a dihedral angle of 86.38 (12)° with the least-squares plane through the 1,3-di-thiane ring. Thus, to a first approximation the mol-ecule has mirror symmetry with the mirror containing the bromo-benzene ring and the 1,4-disposed C atoms of the 1,3-di-thiane ring. In the crystal, mol-ecules associate via weak methyl-ene-bromo-benzene C-H⋯π and π-π [Cg⋯Cg = 3.7770 (14) Å for centrosymmetrically related bromo-benzene rings] inter-actions, forming supra-molecular layers parallel to [10-1]; these stack with no specific inter-molecular inter-actions between them.
  20. Caracelli I, Zukerman-Schpector J, Stefani HA, Gozhina O, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2015 Mar 01;71(Pt 3):o181-2.
    PMID: 25844237 DOI: 10.1107/S2056989015002844
    In the title compound, C10H11NO2S2, the 1,3-di-thiane ring has a chair conformation with the 1,4-disposed C atoms being above and below the remaining four atoms. The nitro-benzene substituent occupies an equatorial position and forms a dihedral angle of 88.28 (5)° with the least-squares plane through the 1,3-di-thiane ring. The nitro group is twisted out of the plane of the benzene ring to which it is connected, forming a dihedral angle of 10.12 (3)°. In the crystal, mol-ecules aggregate into supra-molecular zigzag chains (glide symmetry along the c axis) via nitro-benzene N-O⋯π [N-O⋯Cg(benzene) = 3.4279 (18) Å and angle at O = 93.95 (11)°] inter-actions. The chains pack with no specific inter-molecular inter-actions between them.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links