Displaying publications 61 - 80 of 104 in total

Abstract:
Sort:
  1. Olorunnisola KS, Jamal P, Alam MZ
    3 Biotech, 2018 Oct;8(10):416.
    PMID: 30237963 DOI: 10.1007/s13205-018-1435-4
    Banana peel (BP) is a major waste produced by fruit processing industries. Pre-treatment of BP at different temperatures led to 40% reduction in saponin at 100 °C (from 9.5 to 5.7 mg/g). Sequential mixed culture of Phanerochaete chrysosporium (P. chrysosporium) and Candida utilis (C. utilis) gave highest protein enrichment (88.93 mg/g). There is 26% increase in protein synthesis (from 88.93 to 111.78 mg/g) after media screening. Inclusion of KH2PO4, FeSO4·7H2O, wheat flour and sucrose in the media contributed positively to protein synthesis, while elevated concentration of urea, peptone, K2HPO4, KCl, NH4H2PO4, and MgSO4.7H2O are required to reach optimum protein synthesis. Total soluble sugar (TSS), total reducing sugar (TRS) and total carbohydrate (CHO) consumption varied with respect to protein synthesis in all experimental runs. Optimum protein synthesis required 6 days and inclusion of 5% sucrose, 0.6% NH4H2PO4, 0.4% KCl, and 0.5% MgSO4·7H2O as concentration media constituents to reach 140.95 mg/g protein synthesis equivalent to 300% increase over the raw banana peel protein content (35.0 mg/g).
  2. Jamil SZMR, Rohani ER, Baharum SN, Noor NM
    3 Biotech, 2018 Aug;8(8):322.
    PMID: 30034986 DOI: 10.1007/s13205-018-1336-6
    Callus was induced from mangosteen (Garcinia mangostana L.) young purple-red leaves on Murashige and Skoog basal medium with various combinations of plant growth regulators. Murashige and Skoog medium with 4.44 µM 6-benzylaminopurine and 4.52 µM 2,4-dichlorophenoxyacetic acid was the best for friable callus induction. This friable callus was used for the initiation of cell suspension culture. The effects of different combinations of 6-benzylaminopurine and 2,4-dichlorophenoxyacetic acid, carbon sources and inoculum sizes were tested. It was found that combination of 2.22 µM 6-benzylaminopurine + 2.26 µM 2,4-dichlorophenoxyacetic acid, glucose (30 g/l) and 1.5 g/50 ml inoculum size was the best for cell growth. Callus and cell suspension cultures were then treated either with 100 µM methyl jasmonate as an elicitor for 5 days, or 0.5 g/l casein hydrolysate as an organic supplement for 7 days. Metabolites were then extracted and profiled using liquid chromatography-time of flight mass spectrometry. Multivariate discriminant analyses revealed significant metabolite differences (P ≤ 0.05) for callus and suspension cells treated either with methyl jasmonate or casein hydrolysate. Based on MS/MS data, methyl jasmonate stimulated the production of an alkaloid (thalsimine) and fatty acid (phosphatidyl ethanolamine) in suspension cells while in callus, an alkaloid (thiacremonone) and glucosinolate (7-methylthioheptanaldoxime) was produced. Meanwhile casein hydrolysate stimulated the production of alkaloids such as 3ß,6ß-dihydroxynortropane and cis-hinokiresinol and triterpenoids such as schidigerasaponin and talinumoside in suspension cells. This study provides evidence on the potential of secondary metabolite production from in vitro culture of mangosteen.
  3. Azizi A, Mohd Hanafi N, Basiran MN, Teo CH
    3 Biotech, 2018 Aug;8(8):321.
    PMID: 30034985 DOI: 10.1007/s13205-018-1354-4
    Information on the abiotic stress tolerance and ice-ice disease resistance properties of tissue-cultured Kappaphycus alvarezii is scarce and can pose a big hurdle to a wider use of tissue-cultured seaweed in the industry. Here, we reported on a study of seaweed-associated bacteria diversity in farmed and tissue-cultured K. alvarezii, and ice-ice disease resistance and elevated growth temperature tolerance of tissue-cultured K. alvarezii in laboratory conditions. A total of 40 endophytic seaweed-associated bacteria strains were isolated from 4 types of K. alvarezii samples based on their colony morphologies, Gram staining properties and 16S rRNA gene sequences. Bacteria strains isolated were found to belong to Alteromonas sp., Aestuariibacter sp., Idiomarina sp., Jejuia sp., Halomonas sp., Primorskyibacter sp., Pseudoalteromonas sp., Ruegeria sp., Terasakiella sp., Thalassospira sp. and Vibrio sp. Vibrio alginolyticus strain ABI-TU15 isolated in this study showed agar-degrading property when analyzed using agar depression assay. Disease resistance assay was performed by infecting healthy K. alvarezii with 105 cells/mL Vibrio sp. ABI-TU15. Severe ice-ice disease symptoms were detected in farmed seaweeds compared to the tissue-cultured K. alvarezii. Besides disease resistance, tissue-cultured K. alvarezii showed better tolerance to the elevated growth temperatures of 30 and 35 °C. In conclusion, our overall data suggests that tissue-cultured K. alvarezii exhibited better growth performance than farmed seaweeds when exposed to elevated growth temperature and ice-ice disease-causing agent.
  4. Bello B, Mustafa S, Tan JS, Ibrahim TAT, Tam YJ, Ariff AB, et al.
    3 Biotech, 2018 Aug;8(8):346.
    PMID: 30073131 DOI: 10.1007/s13205-018-1362-4
    This paper deliberates the extraction, characterization and examination of potential application of soluble polysaccharides of palm kernel cake (PKC) as a prebiotic. The PKC was defatted and crude polysaccharide was obtained through water, citric acid or NaOH extraction. The physiochemical properties of the extracted polysaccharides viz. total carbohydrates, protein content, solubility rate, monosaccharides composition, structural information and thermal properties were also determined. The extracted soluble polysaccharides were further subjected to a digestibility test using artificial human gastric juice. Finally, their prebiotic potential on two probiotics, namely Lactobacillus plantarum ATCC 8014 and Lb. rhamnosus ATCC 53103 were evaluated in vitro. It was observed that PKC contained ash (5.2%), moisture (7.4%), carbohydrates (65.8%), protein (16.5%) and fat (5.1%). There were significant differences (P  95%). Protein content in SCPW, SCPCA and SCPN are 0.72, 0.40 and 0.58, respectively, and the peaks which indicated the presence of protein were observed at approximately 1640 cm-1 (amide I). FTIR spectroscopy revealed that the polysaccharides extracts were linked to β and α-glycosidic bonds and thermal analysis using differential scanning calorimeter (DSC) showed the main degradation temperature of SP is about 121 to 125 °C. The SP were found to be highly resistance (> 96%) to hydrolysis when subjected to artificial human gastric juice. The prebiotics potentials of the polysaccharides on probiotics in vitro demonstrated an increase in proliferation of Lb. plantarum ATCC 8014 and Lb. rhamnosus ATCC 53103 with decrease in the pH of the medium and producing organic acids.All the above findings strongly indicated that polysaccharides extracted from PKC, an industrial waste, have a potential to be exploited as novel prebiotics.
  5. Ghosh A, Tiwari GJ
    3 Biotech, 2018 Aug;8(8):338.
    PMID: 30073123 DOI: 10.1007/s13205-018-1337-5
    In the present study, Karanjin and Pongapin, two important furanoflavone, constituents of Pongamia pinnata were studied in the management of Psoriasis. Presently, we have experimentally studied the free radical quenching property of Karanjin and Pongapin. A modified method was used to estimate the scavenging effect of the Karanjin (the highest activity of 95.60%) and Pongapin (68.05%) compared to the ascorbic acid as standard (11.60%) against nitric oxide. Furthermore, Molecular docking studies were performed using CLC drug discovery workbench software version 3.0 of the studied flavones (Karanjin and Pongapin) with the receptors responsible for psoriasis (viz. IL-17A, IL-17F, IL-23, RORγt, and TLR-7). Docking scores of Karanjin and Pongapin with different studied receptors were found to be comparable to that of Methotrexate, a known drug for treating Psoriasis. Docking results suggest that Karanjin and Pongapin might also help in controlling the disease. Overall, our results indicate that flavones (Karanjin and Pongapin) could be a natural and better alternative in curing psoriasis without any side effects.
  6. Biglari N, Ganjali Dashti M, Abdeshahian P, Orita I, Fukui T, Sudesh K
    3 Biotech, 2018 Aug;8(8):330.
    PMID: 30073115 DOI: 10.1007/s13205-018-1351-7
    This study aimed to enhance production of polyhydroxybutyrate P(3HB) by a newly engineered strain of Cupriavidus necator NSDG-GG by applying response surface methodology (RSM). From initial experiment of one-factor-at-a-time (OFAT), glucose and urea were found to be the most significant substrates as carbon and nitrogen sources, respectively, for the production of P(3HB). OFAT experiment results showed that the maximum biomass, P(3HB) content, and P(3HB) concentration of 8.95 g/L, 76 wt%, and 6.80 g/L were achieved at 25 g/L glucose and 0.54 g/L urea with an agitation rate of 200 rpm at 30 °C after 48 h. In this study, RSM was applied to optimize the three key variables (glucose concentration, urea concentration, and agitation speed) at a time to obtain optimal conditions in a multivariable system. Fermentation experiments were conducted in shaking flask by cultivation of C. necator NSDG-GG using various glucose concentrations (10-50 g/L), urea concentrations (0.27-0.73 g/L), and agitation speeds (150-250 rpm). The interaction between the variables studied was analyzed by ANOVA analysis. The RSM results indicated that the optimum cultivation conditions were 37.70 g/L glucose, 0.73 g/L urea, and 200 rpm agitation speed. The validation experiments under optimum conditions produced the highest biomass of 12.84 g/L, P(3HB) content of 92.16 wt%, and P(3HB) concentration of 11.83 g/L. RSM was found to be an efficient method in enhancing the production of biomass, P(3HB) content, and P(3HB) concentration by 43, 21, and 74%, respectively.
  7. Jaganathan SK, Mani MP
    3 Biotech, 2018 Aug;8(8):327.
    PMID: 30073112 DOI: 10.1007/s13205-018-1356-2
    In this study, a wound dressing based on polyurethane (PU) blended with copper sulphate nanofibers was developed using an electrospinning technique. The prepared PU and PU nanocomposites showed smooth fibers without any bead defects. The prepared nanocomposites showed smaller fiber (663 ± 156.30 nm) and pore (888 ± 70.93 nm) diameter compared to the pristine PU (fiber diameter 1159 ± 147.48 nm and pore diameter 1087 ± 62.51 nm). The interaction of PU with copper sulphate was evident in the infrared spectrum through hydrogen-bond formation. Thermal analysis displayed enhanced weight residue at higher temperature suggesting interaction of PU with copper sulphate. The contact angle measurements revealed the hydrophilic nature of the prepared nanocomposites (71° ± 2.309°) compared with pure PU (100° ± 0.5774°). The addition of copper sulphate into the PU matrix increased the surface roughness, as revealed in the atomic force microscopy (AFM) analysis. Mechanical testing demonstrated the enhanced tensile strength behavior of the fabricated nanocomposites (18.58 MPa) compared with the pristine PU (7.12 MPa). The coagulation assays indicated the enhanced blood compatibility of the developed nanocomposites [activated partial thromboplastin time (APTT)-179 ± 3.606 s and partial thromboplastin time (PT)-105 ± 2.646 s] by showing a prolonged blood clotting time compared with the pristine PU (APTT-147.7 ± 3.512 s and PT-84.67 ± 2.517 s). Furthermore, the hemolysis and cytotoxicity studies suggested a less toxicity nature of prepared nanocomposites by displaying low hemolytic index and enhanced cell viability rates compared with the PU membrane. It was observed that the fabricated novel wound dressing possesses better physicochemical and enhanced blood compatibility properties, and may be utilized for wound-healing applications.
  8. Liew KJ, Teo SC, Shamsir MS, Sani RK, Chong CS, Chan KG, et al.
    3 Biotech, 2018 Aug;8(8):376.
    PMID: 30105201 DOI: 10.1007/s13205-018-1391-z
    Rhodothermaceae bacterium RA is a halo-thermophile isolated from a saline hot spring. Previously, the genome of this bacterium was sequenced using a HiSeq 2500 platform culminating in 91 contigs. In this report, we report on the resequencing of its complete genome using a PacBio RSII platform. The genome has a GC content of 68.3%, is 4,653,222 bp in size, and encodes 3711 genes. We are interested in understanding the carbohydrate metabolic pathway, in particular the lignocellulosic biomass degradation pathway. Strain RA harbors 57 glycosyl hydrolase (GH) genes that are affiliated with 30 families. The bacterium consists of cellulose-acting (GH 3, 5, 9, and 44) and hemicellulose-acting enzymes (GH 3, 10, and 43). A crude cell-free extract of the bacterium exhibited endoglucanase, xylanase, β-glucosidase, and β-xylosidase activities. The complete genome information coupled with biochemical assays confirms that strain RA is able to degrade cellulose and xylan. Therefore, strain RA is another excellent member of family Rhodothermaceae as a repository of novel and thermostable cellulolytic and hemicellulolytic enzymes.
  9. Yee W, Abdul-Kadir R, Lee LM, Koh B, Lee YS, Chan HY
    3 Biotech, 2018 Aug;8(8):354.
    PMID: 30105179 DOI: 10.1007/s13205-018-1381-1
    In this work, a simple and inexpensive physical lysis method using a cordless drill fitted with a plastic pellet pestle and 150 mg of sterile sea sand was established for the extraction of DNA from six strains of freshwater microalgae. This lysis method was also tested for RNA extraction from two microalgal strains. Lysis duration between 15 and 120 s using the cetyltrimethyl ammonium bromide (CTAB) buffer significantly increased the yield of DNA from four microalgalstrains (Monoraphidium griffithii NS16, Scenedesmus sp. NS6, Scenedesmus sp. DPBC1 and Acutodesmus sp. DPBB10) compared to control. It was also found that grinding was not required to obtain DNA from two strains of microalgae (Choricystis sp. NPA14 and Chlamydomonas sp. BM3). The average DNA yield obtained using this lysis method was between 62.5 and 78.9 ng/mg for M. griffithii NS16, 42.2-247.0 ng/mg for Scenedesmus sp. NS6, 70.2-110.9 ng/mg for Scenedesmus sp. DPBC1 and 142.8-164.8 ng/mg for Acutodesmus sp. DPBB10. DNA obtained using this method was sufficiently pure for PCR amplification. Extraction of total RNA from M. griffithii NS16 and Mychonastes sp. NPD7 using this lysis method yielded high-quality RNA suitable for RT-PCR. This lysis method is simple, cheap and would enable rapid nucleic acid extraction from freshwater microalgae without requiring costly materials and equipment such as liquid nitrogen or beadbeaters, and would facilitate molecular studies on microalgae in general.
  10. Ang TF, Salleh AB, Normi YM, Leow TC
    3 Biotech, 2018 Jul;8(7):314.
    PMID: 30023146 DOI: 10.1007/s13205-018-1333-9
    Artificial metalloenzymes are unique as they combine the good features of homogeneous and enzymatic catalysts, and they can potentially improve some difficult catalytic assays. This study reports a method that can be used to create an artificial metal-binding site prior to proving it to be functional in a wet lab. Haloalkane dehalogenase was grafted into a metal-binding site to form an artificial metallo-haloalkane dehalogenase and was studied for its potential functionalities in silico. Computational protocols regarding dynamic metal docking were studied using native metalloenzymes and functional artificial metalloenzymes. Using YASARA Structure, a simulation box covering template structure was created to be filled with water molecules followed by one mutated water molecule closest to the metal-binding site to metal ion. A simple energy minimization step was subsequently run using an AMBER force field to allow the metal ion to interact with the metal-binding residues. Long molecular dynamic simulation using YASARA Structure was performed to analyze the stability of the metal-binding site and the distance between metal-binding residues. Metal ions fluctuating around 2.0 Å across a 20 ns simulation indicated a stable metal-binding site. Metal-binding energies were predicted using FoldX, with a native metalloenzyme (carbonic anhydrase) scoring 18.0 kcal/mol and the best mutant model (C1a) scoring 16.4 kcal/mol. Analysis of the metal-binding site geometry was performed using CheckMyMetal, and all scores for the metalloenzymes and mutant models were in an acceptable range. Like native metalloenzymes, the metal-binding site of C1a was supported by residues in the second coordination shell to maintain a more coordinated metal-binding site. Short-chain multihalogenated alkanes (1,2-dibromoethane and 1,2,3-trichloropropane) were able to dock in the active site of C1a. The halides of the substrate were in contact with both the metal and halide-stabilizing residues, thus indicating a better stabilization of the substrate. The simple catalytic mechanism proposed is that the metal ion interacted with halogen and polarized the carbon-halogen bond, thus making the alpha carbon susceptible to attack by nucleophilic hydroxide. The interaction between halogen in the metal ion and halide-stabilizing residues may help to improve the stabilization of the substrate-enzyme complex and reduce the activation energy. This study reports a modified dynamic metal-docking protocol and validation tests to verify the metal-binding site. These approaches can be applied to design different kinds of artificial metalloenzymes or metal-binding sites.
  11. Tan JS, Abbasiliasi S, Ariff AB, Ng HS, Bakar MHA, Chow YH
    3 Biotech, 2018 Jun;8(6):288.
    PMID: 29938157 DOI: 10.1007/s13205-018-1295-y
    This study aimed at recovery of thermostable lipase from Escherichia coli BL21 using porous glass beads grafted with polyethylene glycol (PEG) in aqueous impregnated resins system (AIRS). The influencing parameters such as concentration and pH of extraction solution, concentration of NaCl, size of the beads, and pH of the desorption solution on the partition behaviour of lipase were evaluated. Smaller adsorbent (4 mm) had a 65.5% of recovery yield with approximately two-fold higher purification factor compared to that obtained with the larger adsorbent. Recombinant lipase was purified successfully using AIRS with a purification factor of 7.6 and yield of 78.4% under optimum conditions of 18% (w/w) PEG 4000, 10% (w/w) of potassium citrate at pH 9 with 3% (w/w) of NaCl. Optimum desorption was obtained with 4.0 mm of porous glass beads at pH 9.
  12. Elgharbawy AA, Alam MZ, Moniruzzaman M, Kabbashi NA, Jamal P
    3 Biotech, 2018 May;8(5):236.
    PMID: 29744268 DOI: 10.1007/s13205-018-1253-8
    The pretreatment of empty fruit bunch (EFB) was conducted using an integrated system of IL and cellulases (IL-E), with simultaneous fermentation in one vessel. The cellulase mixture (PKC-Cel) was derived from Trichoderma reesei by solid-state fermentation. Choline acetate [Cho]OAc was utilized for the pretreatment due to its biocompatibility and biodegradability. The treated EFB and its hydrolysate were characterized by the Fourier transform infrared spectroscopy, scanning electron microscopy, and chemical analysis. The results showed that there were significant structural changes in EFB after the treatment in IL-E system. The sugar yield after enzymatic hydrolysis by the PKC-Cel was increased from 0.058 g/g of EFB in the crude sample (untreated) to 0.283 and 0.62 ± 06 g/g in IL-E system after 24 and 48 h of treatment, respectively. The EFB hydrolysate showed the eligibility for ethanol production without any supplements where ethanol yield was 0.275 g ethanol/g EFB in the presence of the IL, while lower yield obtained without IL-pretreatment. Moreover, it was demonstrated that furfural and phenolic compounds were not at the level of suppressing the fermentation process.
  13. Mohamad Ikubar MR, Abdul Manan M, Md Salleh M, Yahya A
    3 Biotech, 2018 May;8(5):259.
    PMID: 29765817 DOI: 10.1007/s13205-018-1268-1
    In current practice, oil palm frond leaflets and stems are re-used for soil nutrient recycling, while the petioles are typically burned. Frond petioles have high commercialization value, attributed to high lignocellulose fiber content and abundant of juice containing free reducing sugars. Pressed petiole fiber is the subject of interest in this study for the production of lignocellulolytic enzyme. The initial characterization showed the combination of 0.125 mm frond particle size and 60% moisture content provided a surface area of 42.3 m2/g, porosity of 12.8%, and density of 1.2 g/cm3, which facilitated fungal solid-state fermentation. Among the several species of Aspergillus and Trichoderma tested, Aspergillus awamori MMS4 yielded the highest xylanase (109 IU/g) and cellulase (12 IU/g), while Trichoderma virens UKM1 yielded the highest lignin peroxidase (222 IU/g). Crude enzyme cocktail also contained various sugar residues, mainly glucose and xylose (0.1-0.4 g/L), from the hydrolysis of cellulose and hemicellulose. FT-IR analysis of the fermented petioles observed reduction in cellulose crystallinity (I900/1098), cellulose-lignin (I900/1511), and lignin-hemicellulose (I1511/1738) linkages. The study demonstrated successful bioconversion of chemically untreated frond petioles into lignin peroxidase and xylanase-rich enzyme cocktail under SSF condition.
  14. Karim KMR, Husaini A, Sing NN, Sinang FM, Roslan HA, Hussain H
    3 Biotech, 2018 Apr;8(4):204.
    PMID: 29607285 DOI: 10.1007/s13205-018-1225-z
    In this study, an alpha-amylase enzyme from a locally isolated Aspergillus flavus NSH9 was purified and characterized. The extracellular α-amylase was purified by ammonium sulfate precipitation and anion-exchange chromatography at a final yield of 2.55-fold and recovery of 11.73%. The molecular mass of the purified α-amylase was estimated to be 54 kDa using SDS-PAGE and the enzyme exhibited optimal catalytic activity at pH 5.0 and temperature of 50 °C. The enzyme was also thermally stable at 50 °C, with 87% residual activity after 60 min. As a metalloenzymes containing calcium, the purified α-amylase showed significantly increased enzyme activity in the presence of Ca2+ ions. Further gene isolation and characterization shows that the α-amylase gene of A. flavus NSH9 contained eight introns and an open reading frame that encodes for 499 amino acids with the first 21 amino acids presumed to be a signal peptide. Analysis of the deduced peptide sequence showed the presence of three conserved catalytic residues of α-amylase, two Ca2+-binding sites, seven conserved peptide sequences, and several other properties that indicates the protein belongs to glycosyl hydrolase family 13 capable of acting on α-1,4-bonds only. Based on sequence similarity, the deduced peptide sequence of A. flavus NSH9 α-amylase was also found to carry two potential surface/secondary-binding site (SBS) residues (Trp 237 and Tyr 409) that might be playing crucial roles in both the enzyme activity and also the binding of starch granules.
  15. Samad AFA, Nazaruddin N, Murad AMA, Jani J, Zainal Z, Ismail I
    3 Biotech, 2018 Mar;8(3):136.
    PMID: 29479512 DOI: 10.1007/s13205-018-1164-8
    In current era, majority of microRNA (miRNA) are being discovered through computational approaches which are more confined towards model plants. Here, for the first time, we have described the identification and characterization of novel miRNA in a non-model plant, Persicaria minor (P. minor) using computational approach. Unannotated sequences from deep sequencing were analyzed based on previous well-established parameters. Around 24 putative novel miRNAs were identified from 6,417,780 reads of the unannotated sequence which represented 11 unique putative miRNA sequences. PsRobot target prediction tool was deployed to identify the target transcripts of putative novel miRNAs. Most of the predicted target transcripts (mRNAs) were known to be involved in plant development and stress responses. Gene ontology showed that majority of the putative novel miRNA targets involved in cellular component (69.07%), followed by molecular function (30.08%) and biological process (0.85%). Out of 11 unique putative miRNAs, 7 miRNAs were validated through semi-quantitative PCR. These novel miRNAs discoveries in P. minor may develop and update the current public miRNA database.
  16. Lam MQ, Nik Mut NN, Thevarajoo S, Chen SJ, Selvaratnam C, Hussin H, et al.
    3 Biotech, 2018 Feb;8(2):104.
    PMID: 29404232 DOI: 10.1007/s13205-018-1133-2
    A halophilic bacterium, Virgibacillus sp. strain CD6, was isolated from salted fish and its extracellular protease was characterized. Protease production was found to be highest when yeast extract was used as nitrogen source for growth. The protease exhibited stability at wide range of salt concentration (0-12.5%, w/v), temperatures (20-60 °C), and pH (4-10) with maximum activity at 10.0% (w/v) NaCl, 60 °C, pH 7 and 10, indicating its polyextremophilicity. The protease activity was enhanced in the presence of Mg2+, Mn2+, Cd2+, and Al3+ (107-122% relative activity), and with retention of activity > 80% for all of other metal ions examined (K+, Ca2+, Cu2+, Co2+, Ni2+, Zn2+, and Fe3+). Both PMSF and EDTA inhibited protease activity, denoting serine protease and metalloprotease properties, respectively. High stability (> 70%) was demonstrated in the presence of organic solvents and detergent constituents, and the extracellular protease from strain CD6 was also found to be compatible in commercial detergents. Proteinaceous stain removal efficacy revealed that crude protease of strain CD6 could significantly enhance the performance of commercial detergent. The protease from Virgibacillus sp. strain CD6 could serve as a promising alternative for various applications, especially in detergent industry.
  17. Manogaran M, Shukor MY, Yasid NA, Khalil KA, Ahmad SA
    3 Biotech, 2018 Feb;8(2):108.
    PMID: 29430369 DOI: 10.1007/s13205-018-1123-4
    The herbicide glyphosate is often used to control weeds in agricultural lands. However, despite its ability to effectively kill weeds at low cost, health problems are still reported due to its toxicity level. The removal of glyphosate from the environment is usually done by microbiological process since chemical process of degradation is ineffective due to the presence of highly stable bonds. Therefore, finding glyphosate-degrading microorganisms in the soil of interest is crucial to remediate this glyphosate.Burkholderia vietnamiensisstrain AQ5-12 was found to have glyphosate-degrading ability. Optimisation of biodegradation condition was carried out utilising one factor at a time (OFAT) and response surface methodology (RSM). Five parameters including carbon and nitrogen source, pH, temperature and glyphosate concentration were optimised. Based on OFAT result, glyphosate degradation was observed to be optimum at fructose concentration of 6, 0.5 g/L ammonia sulphate, pH 6.5, temperature of 32 °C and glyphosate concentration at 100 ppm. Meanwhile, RSM resulted in a better degradation with 92.32% of 100 ppm glyphosate compared to OFAT. The bacterium was seen to tolerate up to 500 ppm glyphosate while increasing concentration results in reduced degradation and bacterial growth rate.
  18. Manogaran M, Ahmad SA, Yasid NA, Yakasai HM, Shukor MY
    3 Biotech, 2018 Feb;8(2):117.
    PMID: 29430378 DOI: 10.1007/s13205-018-1141-2
    In this novel study, we report on the use of two molybdenum-reducing bacteria with the ability to utilise the herbicide glyphosate as the phosphorus source. The bacteria reduced sodium molybdate to molybdenum blue (Mo-blue), a colloidal and insoluble product, which is less toxic. The characterisation of the molybdenum-reducing bacteria was carried out using resting cells immersed in low-phosphate molybdenum media. Two glyphosate-degrading bacteria, namelyBurkholderia vietnamiensisAQ5-12 andBurkholderiasp. AQ5-13, were able to use glyphosate as a phosphorous source to support molybdenum reduction to Mo-blue. The bacteria optimally reduced molybdenum between the pHs of 6.25 and 8. The optimum concentrations of molybdate for strainBurkholderia vietnamiensis strainAQ5-12 was observed to be between 40 and 60 mM, while forBurkholderiasp. AQ5-13, the optimum molybdate concentration occurred between 40 and 50 mM. Furthermore, 5 mM of phosphate was seen as the optimum concentration supporting molybdenum reduction for both bacteria. The optimum temperature aiding Mo-blue formation ranged from 30 to 40 °C forBurkholderia vietnamiensis strainAQ5-12, whereas forBurkholderiasp. AQ5-13, the range was from 35 to 40 °C. Glucose was the best electron donor for supporting molybdate reduction, followed by sucrose, fructose and galactose for both strains. Ammonium sulphate was the best nitrogen source in supporting molybdenum reduction. Interestingly, increasing the glyphosate concentrations beyond 100 and 300 ppm forBurkholderia vietnamiensis strainAQ5-12 andBurkholderiasp. AQ5-13, respectively, significantly inhibited molybdenum reduction. The ability of these bacteria to reduce molybdenum while degrading glyphosate is a useful process for the bioremediation of both toxicants.
  19. Purayil FT, Robert GA, Gothandam KM, Kurup SS, Subramaniam S, Cheruth AJ
    3 Biotech, 2018 Feb;8(2):109.
    PMID: 29430370 DOI: 10.1007/s13205-018-1108-3
    Nine (9) different date palm (Phoenix dactylifera L.) cultivars from UAE, which differ in their flower timings were selected to determine the polymorphism and genetic relationship between these cultivars. Hereditary differences and interrelationships were assessed utilizing inter-simple sequence repeat (ISSR) and directed amplification of minisatellite DNA region (DAMD) primers. Analysis on eight DAMD and five ISSR markers produced total of 113 amplicon including 99 polymorphic and 14 monomorphic alleles with a polymorphic percentage of 85.45. The average polymorphic information content for the two-marker system was almost similar (DAMD, 0.445 and ISSR, 0.459). UPGMA based clustering of DAMD and ISSR revealed that mid-season cultivars, Mkh (Khlas) and MB (Barhee) grouped together to form a subcluster in both the marker systems. The genetic similarity analysis followed by clustering of the cumulative data from the DAMD and ISSR resulted in two major clusters with two early-season cultivars (ENg and Ekn), two mid-season cultivars (MKh and MB) and one late-season cultivar (Lkhs) in cluster 1, cluster 2 includes two late-season cultivars, one early-season cultivar and one mid-season cultivar. The cluster analysis of both DAMD and ISSR marker revealed that, the patterns of variation between some of the tested cultivars were similar in both DNA marker systems. Hence, the present study signifies the applicability of DAMD and ISSR marker system in detecting genetic diversity of date palm cultivars flowering at different seasons. This may facilitate the conservation and improvement of date palm cultivars in the future.
  20. Karamba KI, Ahmad SA, Zulkharnain A, Yasid NA, Ibrahim S, Shukor MY
    3 Biotech, 2018 Jan;8(1):11.
    PMID: 29259886 DOI: 10.1007/s13205-017-1025-x
    The evaluation of degradation and growth kinetics of Serratia marcescens strain AQ07 was carried out using three half-order models at all the initial concentrations of cyanide with the values of regression exceeding 0.97. The presence of varying cyanide concentrations reveals that the growth and degradation of bacteria were affected by the increase in cyanide concentration with a total halt at 700 ppm KCN after 72 h incubation. In this study, specific growth and degradation rates were found to trail the substrate inhibition kinetics. These two rates fitted well to the kinetic models of Teissier, Luong, Aiba and Heldane, while the performance of Monod model was found to be unsatisfactory. These models were used to clarify the substrate inhibition on the bacteria growth. The analyses of these models have shown that Luong model has fitted the experimental data with the highest coefficient of determination (R2) value of 0.9794 and 0.9582 with the lowest root mean square error (RMSE) value of 0.000204 and 0.001, respectively, for the specific rate of degradation and growth. It is the only model that illustrates the maximum substrate concentration (Sm) of 713.4 and empirical constant (n) of 1.516. Tessier and Aiba fitted the experimental data with a R2 value of 0.8002 and 0.7661 with low RMSE of 0.0006, respectively, for specific biodegradation rate, while having a R2 value of 0.9 and RMSE of 0.001, respectively, for specific growth rate. Haldane has the lowest R2 value of 0.67 and 0.78 for specific biodegradation and growth rate with RMSE of 0.0006 and 0.002, respectively. This indicates the level of the bacteria stability in varying concentrations of cyanide and the maximum cyanide concentration it can tolerate within a specific time period. The biokinetic constant predicted from this model demonstrates a good ability of the locally isolated bacteria in cyanide remediation in industrial effluents.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links