Displaying publications 61 - 80 of 122 in total

Abstract:
Sort:
  1. Taha M, Imran S, Rahim F, Wadood A, Khan KM
    Bioorg Chem, 2018 02;76:273-280.
    PMID: 29223804 DOI: 10.1016/j.bioorg.2017.12.001
    Inhibition of α-glucosidase is an effective strategy for controlling post-prandial hyperglycemia in diabetic patients. Beside these α-glucosidase inhibitors has been also used as anti-obesity and anti-viral drugs. Keeping in view the greater importance of α-glucosidase inhibitors here in this study we are presenting oxindole based oxadiazoles hybrid analogs (1-20) synthesis, characterized by different spectroscopic techniques including 1H NMR and EI-MS and their α-glucosidase inhibitory activity. All compounds were found potent inhibitors for the enzyme with IC50 values ranging between 1.25 ± 0.05 and 268.36 ± 4.22 µM when compared with the standard drug acarbose having IC50 value 895.09 ± 2.04 µM. Our study identifies novel series of potent α-glucosidase inhibitors and further investigation on this may led to the lead compounds. A structure activity relationship has been established for all compounds. The interactions of the active compounds and enzyme active site were established with the help of molecular docking studies.
  2. Taha M, Shah SAA, Afifi M, Imran S, Sultan S, Rahim F, et al.
    Bioorg Chem, 2018 04;77:586-592.
    PMID: 29477126 DOI: 10.1016/j.bioorg.2018.01.033
    We have synthesized seventeen Coumarin based derivatives (1-17), characterized by 1HNMR, 13CNMR and EI-MS and evaluated for α-glucosidase inhibitory potential. Among the series, all derivatives exhibited outstanding α-glucosidase inhibition with IC50 values ranging between 1.10 ± 0.01 and 36.46 ± 0.70 μM when compared with the standard inhibitor acarbose having IC50 value 39.45 ± 0.10 μM. The most potent derivative among the series is derivative 3 having IC50 value 1.10 ± 0.01 μM, which are many folds better than the standard acarbose. The structure activity relationship (SAR) was mainly based upon by bring about difference of substituent's on phenyl part. Molecular docking studies were carried out to understand the binding interaction of the most active compounds.
  3. Taha M, Ismail NH, Imran S, Rahim F, Wadood A, Khan H, et al.
    Bioorg Chem, 2016 10;68:56-63.
    PMID: 27454618 DOI: 10.1016/j.bioorg.2016.07.008
    Hybrid bisindole-thiosemicarbazides analogs (1-18) were synthesized and screened for β-glucuronidase activity. All compounds showed varied degree of β-glucuronidase inhibitory potential when compared with standard d-saccharic acid 1,4-lactone (IC50=48.4±1.25μM). Compounds 4, 7, 9, 6, 5, 12, 17 and 18 showed exceptional β-glucuronidase inhibition with IC50 values ranging from 0.1 to 5.7μM. Compounds 1, 3, 8, 16, 13, 2 and 14 also showed better activities than standard with IC50 values ranging from 7.12 to 15.0μM. The remaining compounds 10, 11, and 15 showed good inhibitory potential with IC50 values 33.2±0.75, 21.4±0.30 and 28.12±0.25μM respectively. Molecular docking studies were carried out to confirm the binding interaction of the compounds.
  4. Ullah H, Rahim F, Taha M, Uddin I, Wadood A, Shah SAA, et al.
    Bioorg Chem, 2018 08;78:58-67.
    PMID: 29533215 DOI: 10.1016/j.bioorg.2018.02.020
    We have synthesized oxadiazole derivatives (1-16), characterized by 1H NMR, 13C NMR and HREI-MS and screened for thymidine phosphorylase inhibitory potential. All derivatives display varied degree of thymidine phosphorylase inhibition in the range of 1.10 ± 0.05 to 49.60 ± 1.30 μM when compared with the standard inhibitor 7-Deazaxanthine having an IC50 value 38.68 ± 1.12 μM. Structure activity relationships (SAR) has been established for all compounds to explore the role of substitution and nature of functional group attached to the phenyl ring which applies imperious effect on thymidine phosphorylase activity. Molecular docking study was performed to understand the binding interaction of the most active derivatives with enzyme active site.
  5. Sim YL, Ariffin A, Khan MN
    Bioorg Chem, 2008 Aug;36(4):178-82.
    PMID: 18440044 DOI: 10.1016/j.bioorg.2008.03.003
    The rate of conversion of 1 to N-(2-methoxyphenyl)phthalimide (2) within [HCl] range 5.0x10(-3)-1.0 M at 1.0M ionic strength (by NaCl) reveals the presence of both uncatalyzed and specific acid-catalyzed kinetic terms in the rate law. Intramolecular carboxamide group-assisted cleavage of amide bond of 1 reveals rate enhancement of much larger than 10(6)-fold compared to the expected rate of analogous intermolecular reaction.
  6. Jamila N, Khairuddean M, Yaacob NS, Kamal NN, Osman H, Khan SN, et al.
    Bioorg Chem, 2014 Jun;54:60-7.
    PMID: 24813683 DOI: 10.1016/j.bioorg.2014.04.003
    Garcinia hombroniana (seashore mangosteen) in Malaysia is used to treat itching and as a protective medicine after child birth. This study was aimed to investigate the bioactive chemical constituents of the bark of G. hombroniana. Ethyl acetate and dichloromethane extracts of G. hombroniana yielded two new (1, 9) and thirteen known compounds which were characterized by the spectral techniques of NMR, UV, IR and EI/ESI-MS, and identified as; 2,3',4,5'-tetrahydroxy-6-methoxybenzophenone(1), 2,3',4,4'-tetrahydroxy-6-methoxybenzophenone (2), 2,3',4,6-tetrahydroxybenzophenone (3), 1,3,6,7-tetrahydroxyxanthone (4), 3,3',4',5,7-pentahydroxyflavone (5),3,3',5,5',7-pentahydroxyflavanone (6), 3,3',4',5,5',7-hexahydroxyflavone (7), 4',5,7-trihydroxyflavanone-7-rutinoside (8), 18(13→17)-abeo-3β-acetoxy-9α,13β-lanost-24E-en-26-oic acid (9), garcihombronane B (10), garcihombronane D (11), friedelan-3-one (12), lupeol (13), stigmasterol (14) and stigmasterol glucoside (15). In the in vitro cytotoxicity against MCF-7, DBTRG, U2OS and PC-3 cell lines, compounds 1 and 9 displayed good cytotoxic effects against DBTRG cancer cell lines. Compounds 1-8 were also found to possess significant antioxidant activities. Owing to these properties, this study can be further extended to explore more significant bioactive components of this plant.
  7. Abdullah MA, Lee YR, Mastuki SN, Leong SW, Wan Ibrahim WN, Mohammad Latif MA, et al.
    Bioorg Chem, 2020 11;104:104277.
    PMID: 32971414 DOI: 10.1016/j.bioorg.2020.104277
    A series of aminated- (1-9) and sulfonamide-containing diarylpentadienones (10-18) were synthesized, structurally characterized, and evaluated for their in vitro anti-diabetic potential on α-glucosidase and DPP-4 enzymes. It was found that all the new molecules were non-associated PAINS compounds. The sulfonamide-containing series (compounds 10-18) selectively inhibited α-glucosidase over DPP-4, in which compound 18 demonstrated the highest activity with an IC50 value of 5.69 ± 0.5 µM through a competitive inhibition mechanism. Structure-activity relationship (SAR) studies concluded that the introduction of the trifluoromethylbenzene sulfonamide moiety was essential for the suppression of α-glucosidase. The most active compound 18, was then further tested for in vivo toxicities using the zebrafish animal model, with no toxic effects detected in the normal embryonic development, blood vessel formation, and apoptosis of zebrafish. Docking simulation studies were also carried out to better understand the binding interactions of compound 18 towards the homology modeled α -glucosidase and the human lysosomal α -glucosidase enzymes. The overall results suggest that the new sulfonamide-containing diarylpentadienones, compound 18, could be a promising candidate in the search for a new α-glucosidase inhibitor, and can serve as a basis for further studies involving hit-to-lead optimization, in vivo efficacy and safety assessment in an animal model and mechanism of action for the treatment of T2DM patients.
  8. Konidala SK, Kotra V, Danduga RCSR, Kola PK
    Bioorg Chem, 2020 11;104:104207.
    PMID: 32947135 DOI: 10.1016/j.bioorg.2020.104207
    Four series of thirteen new coumarin-chalcone hybrids (DPCU 1-13, DPCT 1-13, DCCU 1-13 and DCCT 1-13) were designed and synthesized using Biginelli synthesis, Pechmann condensation, Acetylation, and Claisen-Schmidt reactions. Synthesized compounds were tested for insulin receptor in silico docking studies (PDB ID: 1IR3); DCCU 13 and DCCT 13 derivatives received the lowest docking score; Streptozocin (STZ) and Nicotinamide (NA) induced type II diabetes was tested for their anti-diabetic activity in rats. In vivo tests suggested that fasting blood glucose levels of animals treated with DCCU 13 (30 mg/kg body weight) and DCCT 13 (30 mg/kg body weight) were significantly and moderately suppressed, respectively, relative to fasting blood glucose levels of diabetic control animals. Similarly, therapy with DCCU 13 and DCCT 13 attenuated oxidative stress parameters such as lipid peroxidation (MDA), superoxide dismutase (SOD) and increased the glutathione (GSH) in the liver and pancreas in a dose-dependent manner. In comparison, therapy with DCCU 13 (30 mg/kg body weight) mitigated alterations in the histological architecture of the liver and pancreatic tissue. These results indicated that the hybrids DUUC 13 and DCCT 13 at 30 mg/kg had an anti-hyperglycemic and antioxidant impact on STZ + NA mediated type II diabetes in rats. Further detailed work could be required to determine the precise mode of action of the anti-diabetic behavior of hybrids.
  9. Mohd Faudzi SM, Abdullah MA, Abdull Manap MR, Ismail AZ, Rullah K, Mohd Aluwi MFF, et al.
    Bioorg Chem, 2020 01;94:103376.
    PMID: 31677861 DOI: 10.1016/j.bioorg.2019.103376
    In search of potent anti-inflammatory agents, twenty-four chalcone derivatives including seven new compounds (13 - 17, 21 and 23) containing pyrrole moiety were designed, synthesized, and assessed for their nitric oxide (NO) and prostaglandin E2 (PGE2) suppression ability on IFN-γ/LPS-induced RAW 264.7 macrophage cells. Results showed that none of the synthesized compounds were PAINS-associated molecules, with 3-(2,5-dimethoxyphenyl)-1-(1H-pyrrol-2-yl)-prop-2-en-1-one (compound 16) exhibiting remarkable inhibition activity towards PGE2 and NO production with IC50 values of 0.5 ± 1.5 µM and 12.1 ± 1.5 µM, respectively. Physicochemical and ADMET studies showed that majority of the compounds obey to Lipinski's rule of five (RO5) having high blood brain barrier (BBB) penetration, human intestinal absorption (HIA), P- glycoprotein (PgP) inhibition and plasma binding protein (PPB) inhibition. The obtained atomic coordinates for the single-crystal XRD of 16 were then applied in a molecular docking simulation, and compound 16 was found to participate in a number of important binding interactions in the binding sites of ERK and mPGES-1. Based on these results, we have observed the potential of compound 16 as a new hit anti-inflammatory agent, and these findings could serve as a basis for further studies on its mechanism of action.
  10. Chia SY, Khor BK, Tay YJ, Liew KF, Lee CY
    Bioorg Chem, 2023 Apr 02;135:106509.
    PMID: 37030107 DOI: 10.1016/j.bioorg.2023.106509
    Sulfuretin, a naturally occurring aurone is reported to inhibit macrophage and microglia activation. A series of aurones incorporating basic amines and lipophilic functionalities at ring A and/or ring B were synthesized to improve upon present sulfuretin activity towards targeting brain microglia while overcoming the blood-brain barrier (BBB). Evaluation of the ability of the aurones to inhibit lipopolysaccharide (LPS)-stimulated nitric oxide (NO) secretion by murine BV-2 microglia has identified several inhibitors showing significant NO reduction at 1 to 10 µM. Potent inhibitors were represented by aurones with bulky, planar moieties at ring A (3f) or at ring B (1e and 1f) and having a pendant piperidine at ring B (1a, 2a, 2b, and 3f). The active aurones inhibited the BV-2 microglia polarizing towards the M1 state as indicated by attenuation of IL-1β and TNF-α secretions in LPS-activated microglia but did not induce the microglia towards the M2 state. The aurones 2a, 2b, and 1f showed high passive BBB permeability in the parallel artificial membrane permeability assay (PAMPA) owing to their optimal lipophilicities. 2a, being non-cell toxic, BBB permeant and potent, represents a new lead for the development of aurones as inhibitors of activated microglia.
  11. Hassan M, Abbasi MA, Aziz-Ur-Rehman, Siddiqui SZ, Shahzadi S, Raza H, et al.
    Bioorg Chem, 2019 10;91:103138.
    PMID: 31446329 DOI: 10.1016/j.bioorg.2019.103138
    In the designed research work, a series of 2-furoyl piperazine based sulfonamide derivatives were synthesized as therapeutic agents to target the Alzheimer's disease. The structures of the newly synthesized compounds were characterized through spectral analysis and their inhibitory potential was evaluated against butyrylcholinesterase (BChE). The cytotoxicity of these sulfonamides was also ascertained through hemolysis of bovine red blood cells. Furthermore, compounds were inspected by Lipinki Rule and their binding profiles against BChE were discerned by molecular docking. The protein fluctuations in docking complexes were recognized by dynamic simulation. From our in vitro and in silico results 5c, 5j and 5k were identified as promising lead compounds for the treatment of targeted disease.
  12. Singhal S, Manikrao Patil V, Verma S, Masand N
    Bioorg Chem, 2024 May;146:107277.
    PMID: 38493634 DOI: 10.1016/j.bioorg.2024.107277
    Diabetes mellitus (DM) is one of the largest public health problems worldwide and in the last decades various therapeutic targets have been investigated. For the treatment of type-2 DM (T2DM), dipeptidyl peptidase-4 (DPP-4) is one of the well reported target and has established safety in terms of cardiovascular complexicity. Preclinical and clinical studies using DPP-4 inhibitors have demonstrated its safety and effectiveness and have lesser risk of associated hypoglycaemic effect making it suitable for elderly patients. FDA has approved a number of structurally diverse DPP-4 inhibitors for clinical use. The present manuscript aims to focus on the well reported hybrid and non-hybrid analogues and their structural activity relationship (SAR) studies. It aims to provide structural insights for this class of compounds pertaining to favourable applicability of selective DPP-4 inhibitors in the treatment of T2DM.
  13. Yoon YK, Ali MA, Wei AC, Choon TS, Khaw KY, Murugaiyah V, et al.
    Bioorg Chem, 2013 Aug;49:33-9.
    PMID: 23886696 DOI: 10.1016/j.bioorg.2013.06.008
    Two series of novel acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors containing benzimidazole core structure were synthesized by a four-step reaction pathway starting from 4-fluoro-3-nitrobenzoic acid as the basic compound. The structure of the novel benzimidazoles was characterized and confirmed by the elemental and mass spectral analyses as well as (1)H NMR spectroscopic data. Of the 34 novel synthesized compounds, three benzimidazoles revealed AChE inhibition with IC50<10 μM. The highest inhibitory activity (IC50=5.12 μM for AChE and IC50=8.63 μM for BChE) corresponds to the compound 5IIc (ethyl 1-(3-(1H-imidazol-1-yl)propyl)-2-(4-nitrophenyl)-1H-benzo[d]imidazole-5-carboxylate). The relationship between lipophilicity and the chemical structures as well as their limited structure-activity relationship was discussed.
  14. Qazi SU, Naz A, Hameed A, Osra FA, Jalil S, Iqbal J, et al.
    Bioorg Chem, 2021 10;115:105209.
    PMID: 34364054 DOI: 10.1016/j.bioorg.2021.105209
    A series of semicarbazone, thiosemicarbazone, thiazole, and oxazole derivatives were designed, synthesized, and examined for monoamine oxidase inhibition using two isoforms, i.e., MAO-A and MAO-B. Among all the analogues, 3c and 3j possessed substantial activity against MAO-A with IC50 values of 5.619 ± 1.04 µM and 0.5781 ± 0.1674 µM, respectively. Whereas 3d and 3j were active against monoamine oxidase B with the IC50 values of 9.952 ± 1.831 µM and 3.5 ± 0.7 µM, respectively. Other derivatives active against MAO-B were 3c and 3g with the IC50 values of 17.67 ± 5.6 µM and 37.18 ± 2.485 µM. Moreover, molecular docking studies were achieved for the most potent compound (3j) contrary to human MAO-A and MAO-B. Kinetic studies were also performed for the most potent analogue to evaluate its mode of interaction with MAO-A and MAO-B.
  15. Ishaq M, Taslimi P, Shafiq Z, Khan S, Ekhteiari Salmas R, Zangeneh MM, et al.
    Bioorg Chem, 2020 07;100:103924.
    PMID: 32442818 DOI: 10.1016/j.bioorg.2020.103924
    In recent decade, the entrance of α-N-heterocyclic thiosemicarbazones derivates (Triapne, COTI-2 and DpC) in clinical trials for cancer and HIV-1 has vastly increased the interests of medicinal chemists towards this class of organic compounds. In the given study, a series of eighteen new (3a-r) 3-ethoxy salicylaldehyde-based thiosemicarbazones (TSC), bearing aryl and cycloalkyl substituents, were synthesized and assayed for their pharmacological potential against carbonic anhydrases (hCA I and hCA II), cholinesterases (AChE and BChE) and α-glycosidase. The hCA I isoform was inhibited by these novel 3-ethoxysalicylaldehyde thiosemicarbazone derivatives (3a-r) in low nanomolar levels, the Ki of which differed between 144.18 ± 26.74 and 454.92 ± 48.32 nM. Against the physiologically dominant isoform hCA II, the novel compounds demonstrated Kis varying from 110.54 ± 14.05 to 444.12 ± 36.08 nM. Also, these novel derivatives (3a-r) effectively inhibited AChE, with Ki values in the range of 385.38 ± 45.03 to 983.04 ± 104.64 nM. For BChE was obtained with Ki values in the range of 400.21 ± 35.68 to 1003.02 ± 154.27 nM. For α-glycosidase the most effective Ki values of 3l, 3n, and 3q were with Ki values of 12.85 ± 1.05, 16.03 ± 2.84, and 19.16 ± 2.66 nM, respectively. Moreover, the synthesized TCSs were simulated using force field methods whereas the binding energies of the selected compounds were estimated using MM-GBSA method. The findings indicate the present novel 3-ethoxy salicylaldehyde-based thiosemicarbazones to be excellent hits for pharmaceutical applications.
  16. Imran S, Taha M, Selvaraj M, Ismail NH, Chigurupati S, Mohammad JI
    Bioorg Chem, 2017 08;73:121-127.
    PMID: 28648924 DOI: 10.1016/j.bioorg.2017.06.007
    A series of twenty indole hydrazone analogs (1-21) were synthesized, characterized by different spectroscopic techniques such as 1H NMR and EI-MS, and screened for α-amylase inhibitory activity. All analogs showed a variable degree of α-amylase inhibition with IC50 values ranging between 1.66 and 2.65μM. Nine compounds that are 1 (2.23±0.01μM), 8 (2.44±0.12μM), 10 (1.92±0.12μM), 12 (2.49±0.17μM), 13 (1.66±0.09μM), 17 (2.25±0.1μM), 18 (1.87±0.25μM), 20 (1.83±0.63μM), and 19 (1.97±0.02μM) showed potent α-amylase inhibition when compared with the standard acarbose (1.05±0.29μM). Other analogs showed good to moderate α-amylase inhibition. The structure activity relationship is mainly focusing on difference of substituents on phenyl part. Molecular docking studies were carried out to understand the binding interaction of the most active compounds.
  17. Taha M, Imran S, Salahuddin M, Iqbal N, Rahim F, Uddin N, et al.
    Bioorg Chem, 2021 05;110:104808.
    PMID: 33756236 DOI: 10.1016/j.bioorg.2021.104808
    We have synthesized new hybrid class of indole bearing sulfonamide scaffolds (1-17) as α-glucosidase inhibitors. All scaffolds were found to be active except scaffold 17 and exhibited IC50 values ranging from 1.60 to 51.20 µM in comparison with standard acarbose (IC50 = 42.45 µM). Among the synthesized hybrid class scaffolds 16 was the most potent analogue with IC50 value 1.60 μM, showing many folds better potency as compared to standard acarbose. Whereas, synthesized scaffolds 1-15 showed good α-glucosidase inhibitory potential. Based on α-glucosidase inhibitory effect, Scaffold 16 was chosen due to highest activity in vitro for further evaluation of antidiabetic activity in Streptozotocin induced diabetic rats. The Scaffold 16 exhibited significant antidiabetic activity. All analogues were characterized through 1H, 13CNMR and HR MS. Structure-activity relationship of synthesized analogues was established and confirmed through molecular docking study.
  18. Taha M, Tariq Javid M, Imran S, Selvaraj M, Chigurupati S, Ullah H, et al.
    Bioorg Chem, 2017 10;74:179-186.
    PMID: 28826047 DOI: 10.1016/j.bioorg.2017.08.003
    α-Amylase is a target for type-2 diabetes mellitus treatment. However, small molecule inhibitors of α-amylase are currently scarce. In the course of developing small molecule α-amylase inhibitors, we designed and synthesized thiadiazole quinoline analogs (1-30), characterized by different spectroscopic techniques such as 1HNMR and EI-MS and screened for α-amylase inhibitory potential. Thirteen analogs 1, 2, 3, 4, 5, 6, 22, 23, 25, 26, 27, 28 and 30 showed outstanding α-amylase inhibitory potential with IC50 values ranges between 0.002±0.60 and 42.31±0.17μM which is many folds better than standard acarbose having IC50 value 53.02±0.12μM. Eleven analogs 7, 9, 10, 11, 12, 14, 15, 17, 18, 19 and 24 showed good to moderate inhibitory potential while seven analogs 8, 13, 16, 20, 21 and 29 were found inactive. Our study identifies novel series of potent α-amylase inhibitors for further investigation. Structure activity relationship has been established.
  19. Taha M, Adnan Ali Shah S, Afifi M, Imran S, Sultan S, Rahim F, et al.
    Bioorg Chem, 2018 08;78:17-23.
    PMID: 29525348 DOI: 10.1016/j.bioorg.2018.02.028
    Thymidine phosphorylase (TP) over expression plays role in several pathological conditions, such as rheumatoid arthritis, chronic inflammatory diseases, psoriasis, and tumor angiogenesis. The inhibitor of this enzyme plays an important role in preventing the serious threat due to over expression of TP. In this regard, a series of seventeenanalogs of 3-formylcoumarin (1-17) were synthesized, characterized by 1HNMR and EI-MS and screened for thymidine phosphorylaseinhibitory activity. All analogs showed a variable degree of thymidine phosphorylase inhibition with IC50 values ranging between 0.90 ± 0.01 and 53.50 ± 1.20 μM when compared with the standard inhibitor 7-Deazaxanthine having IC50 value 38.68 ± 1.12 μM. Among the series, fifteenanalogs such as 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16 and 17 showed excellent inhibition which is many folds better than the standard 7-Deazaxanthine whiletwo analogs 13 and 14 showed good inhibition. The structure activity relationship (SAR) was mainly based upon by bring about difference of substituents on phenyl ring. Molecular docking study was carried out to understand the binding interaction of the most active analogs.
  20. Agbo EN, Gildenhuys S, Choong YS, Mphahlele MJ, More GK
    Bioorg Chem, 2020 08;101:103997.
    PMID: 32554280 DOI: 10.1016/j.bioorg.2020.103997
    A series of furocoumarin-stilbene hybrids has been synthesized and evaluated in vitro for inhibitory effect against acetylcholinesterase (AChE), butyrylcholinestarase (BChE), β-secretase, cyclooxygenase-2 (COX-2), and lipoxygenase-5 (LOX-5) activities including free radical-scavenging properties. Among these hybrids, 8-(3,5-dimethoxyphenyl)-4-(3,5-dimethoxystyryl)furochromen-2-one 4h exhibited significant anticholinesterase activity and inhibitory effect against β-secretase, COX-2 and LOX-5 activities. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity and an in vitro cell-based antioxidant activity assay involving lipopolysaccharide induced reactive oxygen species production revealed that 4h has capability of scavenging free radicals. Molecular docking into AChE, BChE, β-secretase, COX-2 and LOX-5 active sites has also been performed.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links