Displaying publications 61 - 80 of 133 in total

Abstract:
Sort:
  1. Nabi FG, Sundaraj K, Lam CK, Palaniappan R
    Comput Biol Med, 2019 01;104:52-61.
    PMID: 30439599 DOI: 10.1016/j.compbiomed.2018.10.035
    OBJECTIVE: This study aimed to investigate and classify wheeze sounds of asthmatic patients according to their severity level (mild, moderate and severe) using spectral integrated (SI) features.

    METHOD: Segmented and validated wheeze sounds were obtained from auscultation recordings of the trachea and lower lung base of 55 asthmatic patients during tidal breathing manoeuvres. The segments were multi-labelled into 9 groups based on the auscultation location and/or breath phases. Bandwidths were selected based on the physiology, and a corresponding SI feature was computed for each segment. Univariate and multivariate statistical analyses were then performed to investigate the discriminatory behaviour of the features with respect to the severity levels in the various groups. The asthmatic severity levels in the groups were then classified using the ensemble (ENS), support vector machine (SVM) and k-nearest neighbour (KNN) methods.

    RESULTS AND CONCLUSION: All statistical comparisons exhibited a significant difference (p 

  2. Subudhi A, Acharya UR, Dash M, Jena S, Sabut S
    Comput Biol Med, 2018 12 01;103:116-129.
    PMID: 30359807 DOI: 10.1016/j.compbiomed.2018.10.016
    It is difficult to develop an accurate algorithm to detect the stroke lesions using magnetic resonance imaging (MRI) images due to variation in different lesion sizes, variation in morphological structure, and similarity in intensity of lesion with normal brain in three types of stroke, namely partial anterior circulation syndrome (PACS), lacunar syndrome (LACS) and total anterior circulation stroke (TACS). In this paper, we have integrated the advantages of Delaunay triangulation (DT) and fractional order Darwinian particle swarm optimization (FODPSO), called DT-FODPSO technique for automatic segmentation of the structure of the stroke lesion. The approach was validated on 192 MRI images obtained from different stroke subjects. Statistical and morphological features were extracted and classified according to the Oxfordshire community stroke project (OCSP) using support vector machine (SVM) and random forest (RF) classifiers. The method effectively detected the stroke lesions and achieved promising results with an average sensitivity of 0.93, accuracy of 0.95, JI of 0.89 and Dice similarity index of 0.93 using RF classifier. These promising results indicates the DT based optimized approach is efficient in detecting ischemic stroke and it can aid the neuro-radiologists to validate their routine screening.
  3. Faust O, Shenfield A, Kareem M, San TR, Fujita H, Acharya UR
    Comput Biol Med, 2018 11 01;102:327-335.
    PMID: 30031535 DOI: 10.1016/j.compbiomed.2018.07.001
    Atrial Fibrillation (AF), either permanent or intermittent (paroxysnal AF), increases the risk of cardioembolic stroke. Accurate diagnosis of AF is obligatory for initiation of effective treatment to prevent stroke. Long term cardiac monitoring improves the likelihood of diagnosing paroxysmal AF. We used a deep learning system to detect AF beats in Heart Rate (HR) signals. The data was partitioned with a sliding window of 100 beats. The resulting signal blocks were directly fed into a deep Recurrent Neural Network (RNN) with Long Short-Term Memory (LSTM). The system was validated and tested with data from the MIT-BIH Atrial Fibrillation Database. It achieved 98.51% accuracy with 10-fold cross-validation (20 subjects) and 99.77% with blindfold validation (3 subjects). The proposed system structure is straight forward, because there is no need for information reduction through feature extraction. All the complexity resides in the deep learning system, which gets the entire information from a signal block. This setup leads to the robust performance for unknown data, as measured with the blind fold validation. The proposed Computer-Aided Diagnosis (CAD) system can be used for long-term monitoring of the human heart. To the best of our knowledge, the proposed system is the first to incorporate deep learning for AF beat detection.
  4. Oh SL, Ng EYK, Tan RS, Acharya UR
    Comput Biol Med, 2018 11 01;102:278-287.
    PMID: 29903630 DOI: 10.1016/j.compbiomed.2018.06.002
    Arrhythmia is a cardiac conduction disorder characterized by irregular heartbeats. Abnormalities in the conduction system can manifest in the electrocardiographic (ECG) signal. However, it can be challenging and time-consuming to visually assess the ECG signals due to the very low amplitudes. Implementing an automated system in the clinical setting can potentially help expedite diagnosis of arrhythmia, and improve the accuracies. In this paper, we propose an automated system using a combination of convolutional neural network (CNN) and long short-term memory (LSTM) for diagnosis of normal sinus rhythm, left bundle branch block (LBBB), right bundle branch block (RBBB), atrial premature beats (APB) and premature ventricular contraction (PVC) on ECG signals. The novelty of this work is that we used ECG segments of variable length from the MIT-BIT arrhythmia physio bank database. The proposed system demonstrated high classification performance in the handling of variable-length data, achieving an accuracy of 98.10%, sensitivity of 97.50% and specificity of 98.70% using ten-fold cross validation strategy. Our proposed model can aid clinicians to detect common arrhythmias accurately on routine screening ECG.
  5. Sharma M, Tan RS, Acharya UR
    Comput Biol Med, 2018 11 01;102:341-356.
    PMID: 30049414 DOI: 10.1016/j.compbiomed.2018.07.005
    Myocardial infarction (MI), also referred to as heart attack, occurs when there is an interruption of blood flow to parts of the heart, due to the acute rupture of atherosclerotic plaque, which leads to damage of heart muscle. The heart muscle damage produces changes in the recorded surface electrocardiogram (ECG). The identification of MI by visual inspection of the ECG requires expert interpretation, and is difficult as the ECG signal changes associated with MI can be short in duration and low in magnitude. Hence, errors in diagnosis can lead to delay the initiation of appropriate medical treatment. To lessen the burden on doctors, an automated ECG based system can be installed in hospitals to help identify MI changes on ECG. In the proposed study, we develop a single-channel single lead ECG based MI diagnostic system validated using noisy and clean datasets. The raw ECG signals are taken from the Physikalisch-Technische Bundesanstalt database. We design a novel two-band optimal biorthogonal filter bank (FB) for analysis of the ECG signals. We present a method to design a novel class of two-band optimal biorthogonal FB in which not only the product filter but the analysis lowpass filter is also a halfband filter. The filter design problem has been composed as a constrained convex optimization problem in which the objective function is a convex combination of multiple quadratic functions and the regularity and perfect reconstruction conditions are imposed in the form linear equalities. ECG signals are decomposed into six subbands (SBs) using the newly designed wavelet FB. Following to this, discriminating features namely, fuzzy entropy (FE), signal-fractal-dimensions (SFD), and renyi entropy (RE) are computed from all the six SBs. The features are fed to the k-nearest neighbor (KNN). The proposed system yields an accuracy of 99.62% for the noisy dataset and an accuracy of 99.74% for the clean dataset, using 10-fold cross validation (CV) technique. Our MI identification system is robust and highly accurate. It can thus be installed in clinics for detecting MI.
  6. Porwal P, Pachade S, Kokare M, Giancardo L, Mériaudeau F
    Comput Biol Med, 2018 11 01;102:200-210.
    PMID: 30308336 DOI: 10.1016/j.compbiomed.2018.09.028
    Age-related Macular Degeneration (AMD) and Diabetic Retinopathy (DR) are the most prevalent diseases responsible for visual impairment in the world. This work investigates discrimination potential in the texture of color fundus images to distinguish between diseased and healthy cases by avoiding the prior lesion segmentation step. It presents a retinal background characterization approach and explores the potential of Local Tetra Patterns (LTrP) for texture classification of AMD, DR and Normal images. Five different experiments distinguishing between DR - normal, AMD - normal, DR - AMD, pathological - normal and AMD - DR - normal cases were conducted and validated using the proposed approach, and promising results were obtained. For all five experiments, different classifiers namely, AdaBoost, c4.5, logistic regression, naive Bayes, neural network, random forest and support vector machine were tested. We experimented with three public datasets, ARIA, STARE and E-Optha. Further, the performance of LTrP is compared with other texture descriptors, such as local phase quantization, local binary pattern and local derivative pattern. In all cases, the proposed method obtained the area under the receiver operating characteristic curve and f-score values higher than 0.78 and 0.746 respectively. It was found that both performance measures achieve over 0.995 for DR and AMD detection using a random forest classifier. The obtained results suggest that the proposed technique can discriminate retinal disease using texture information and has potential to be an important component for an automated screening solution for retinal images.
  7. Arif MA, Mohamad MS, Abd Latif MS, Deris S, Remli MA, Mohd Daud K, et al.
    Comput Biol Med, 2018 11 01;102:112-119.
    PMID: 30267898 DOI: 10.1016/j.compbiomed.2018.09.015
    Metabolic engineering involves the modification and alteration of metabolic pathways to improve the production of desired substance. The modification can be made using in silico gene knockout simulation that is able to predict and analyse the disrupted genes which may enhance the metabolites production. Global optimization algorithms have been widely used for identifying gene knockout strategies. However, their productions were less than theoretical maximum and the algorithms are easily trapped into local optima. These algorithms also require a very large computation time to obtain acceptable results. This is due to the complexity of the metabolic models which are high dimensional and contain thousands of reactions. In this paper, a hybrid algorithm of Cuckoo Search and Minimization of Metabolic Adjustment is proposed to overcome the aforementioned problems. The hybrid algorithm searches for the near-optimal set of gene knockouts that leads to the overproduction of metabolites. Computational experiments on two sets of genome-scale metabolic models demonstrate that the proposed algorithm is better than the previous works in terms of growth rate, Biomass Product Couple Yield, and computation time.
  8. Yıldırım Ö, Pławiak P, Tan RS, Acharya UR
    Comput Biol Med, 2018 11 01;102:411-420.
    PMID: 30245122 DOI: 10.1016/j.compbiomed.2018.09.009
    This article presents a new deep learning approach for cardiac arrhythmia (17 classes) detection based on long-duration electrocardiography (ECG) signal analysis. Cardiovascular disease prevention is one of the most important tasks of any health care system as about 50 million people are at risk of heart disease in the world. Although automatic analysis of ECG signal is very popular, current methods are not satisfactory. The goal of our research was to design a new method based on deep learning to efficiently and quickly classify cardiac arrhythmias. Described research are based on 1000 ECG signal fragments from the MIT - BIH Arrhythmia database for one lead (MLII) from 45 persons. Approach based on the analysis of 10-s ECG signal fragments (not a single QRS complex) is applied (on average, 13 times less classifications/analysis). A complete end-to-end structure was designed instead of the hand-crafted feature extraction and selection used in traditional methods. Our main contribution is to design a new 1D-Convolutional Neural Network model (1D-CNN). The proposed method is 1) efficient, 2) fast (real-time classification) 3) non-complex and 4) simple to use (combined feature extraction and selection, and classification in one stage). Deep 1D-CNN achieved a recognition overall accuracy of 17 cardiac arrhythmia disorders (classes) at a level of 91.33% and classification time per single sample of 0.015 s. Compared to the current research, our results are one of the best results to date, and our solution can be implemented in mobile devices and cloud computing.
  9. Bhat S, Acharya UR, Hagiwara Y, Dadmehr N, Adeli H
    Comput Biol Med, 2018 11 01;102:234-241.
    PMID: 30253869 DOI: 10.1016/j.compbiomed.2018.09.008
    Parkinson's disease (PD) is a neurodegenerative disease of the central nervous system caused due to the loss of dopaminergic neurons. It is classified under movement disorder as patients with PD present with tremor, rigidity, postural changes, and a decrease in spontaneous movements. Comorbidities including anxiety, depression, fatigue, and sleep disorders are observed prior to the diagnosis of PD. Gene mutations, exposure to toxic substances, and aging are considered as the causative factors of PD even though its genesis is unknown. This paper reviews PD etiologies, progression, and in particular measurable indicators of PD such as neuroimaging and electrophysiology modalities. In addition to gene therapy, neuroprotective, pharmacological, and neural transplantation treatments, researchers are actively aiming at identifying biological markers of PD with the goal of early diagnosis. Neuroimaging modalities used together with advanced machine learning techniques offer a promising path for the early detection and intervention in PD patients.
  10. Sharma M, Agarwal S, Acharya UR
    Comput Biol Med, 2018 09 01;100:100-113.
    PMID: 29990643 DOI: 10.1016/j.compbiomed.2018.06.011
    Obstructive sleep apnea (OSA) is a sleep disorder caused due to interruption of breathing resulting in insufficient oxygen to the human body and brain. If the OSA is detected and treated at an early stage the possibility of severe health impairment can be mitigated. Therefore, an accurate automated OSA detection system is indispensable. Generally, OSA based computer-aided diagnosis (CAD) system employs multi-channel, multi-signal physiological signals. However, there is a great need for single-channel bio-signal based low-power, a portable OSA-CAD system which can be used at home. In this study, we propose single-channel electrocardiogram (ECG) based OSA-CAD system using a new class of optimal biorthogonal antisymmetric wavelet filter bank (BAWFB). In this class of filter bank, all filters are of even length. The filter bank design problem is transformed into a constrained optimization problem wherein the objective is to minimize either frequency-spread for the given time-spread or time-spread for the given frequency-spread. The optimization problem is formulated as a semi-definite programming (SDP) problem. In the SDP problem, the objective function (time-spread or frequency-spread), constraints of perfect reconstruction (PR) and zero moment (ZM) are incorporated in their time domain matrix formulations. The global solution for SDP is obtained using interior point algorithm. The newly designed BAWFB is used for the classification of OSA using ECG signals taken from the physionet's Apnea-ECG database. The ECG segments of 1 min duration are decomposed into six wavelet subbands (WSBs) by employing the proposed BAWFB. Then, the fuzzy entropy (FE) and log-energy (LE) features are computed from all six WSBs. The FE and LE features are classified into normal and OSA groups using least squares support vector machine (LS-SVM) with 35-fold cross-validation strategy. The proposed OSA detection model achieved the average classification accuracy, sensitivity, specificity and F-score of 90.11%, 90.87% 88.88% and 0.92, respectively. The performance of the model is found to be better than the existing works in detecting OSA using the same database. Thus, the proposed automated OSA detection system is accurate, cost-effective and ready to be tested with a huge database.
  11. Al-Shuhaib MBS, Al-Kafajy FR, Badi MA, AbdulAzeez S, Marimuthu K, Al-Juhaishi HAI, et al.
    Comput Biol Med, 2018 09 01;100:17-26.
    PMID: 29960146 DOI: 10.1016/j.compbiomed.2018.06.019
    Because of variable inconvenient living conditions in some places around the world, it is difficult to collect reliable physiological data for ostriches. Therefore, this study aims to provide a comprehensive in silico insight for the nature of polymorphism of important genetic loci that are related to physiological and reproductive traits. Sixty-nine mature ostriches ranging over half of Iraq were screened. Six exonic genetic loci, including cytochrome c oxidase I (COX1), cytochrome b (CYTB), secretogranin V (SCG5), feather keratin 2-like (FK2), prolactin (PRL) and placenta growth factor (PGF) were genotyped by PCR-single stranded conformation polymorphism (SSCP). Thirty-six novel SNPs, including seventeen nonsynonymous (ns) SNPs, were observed. Several computational software programs were utilized to assess the extent of the nsSNPs on their corresponding proteins structure, function and stability. The results showed several deleterious functional and stability changes in almost all the proteins studied. The total severity of each missense mutation was evaluated and compared with other nsSNPs accumulatively. It is evident from the extensive cumulative in silico computation that both p.E34D and p.E60K in PGF have the highest deleterious effect. The cumulative predictions from the present study are an impressive guide for the genotypes of African ostriches, which bypassed the expensive protocols for wet laboratory screening, to identify the effects of variants. To the best of our knowledge, this is the first investigation of its kind on the analyses and prediction outcome of missense mutations in African ostrich populations. The highly deleterious nsSNPs in the placenta growth factor are possible adaptive mutations which might be associated with adaptation in extreme and new environments. The flow and protocol of the computational predictions can be extended for various wild animals to identify the molecular nature of adaptations.
  12. Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adeli H
    Comput Biol Med, 2018 09 01;100:270-278.
    PMID: 28974302 DOI: 10.1016/j.compbiomed.2017.09.017
    An encephalogram (EEG) is a commonly used ancillary test to aide in the diagnosis of epilepsy. The EEG signal contains information about the electrical activity of the brain. Traditionally, neurologists employ direct visual inspection to identify epileptiform abnormalities. This technique can be time-consuming, limited by technical artifact, provides variable results secondary to reader expertise level, and is limited in identifying abnormalities. Therefore, it is essential to develop a computer-aided diagnosis (CAD) system to automatically distinguish the class of these EEG signals using machine learning techniques. This is the first study to employ the convolutional neural network (CNN) for analysis of EEG signals. In this work, a 13-layer deep convolutional neural network (CNN) algorithm is implemented to detect normal, preictal, and seizure classes. The proposed technique achieved an accuracy, specificity, and sensitivity of 88.67%, 90.00% and 95.00%, respectively.
  13. Sharma M, Goyal D, Achuth PV, Acharya UR
    Comput Biol Med, 2018 07 01;98:58-75.
    PMID: 29775912 DOI: 10.1016/j.compbiomed.2018.04.025
    Sleep related disorder causes diminished quality of lives in human beings. Sleep scoring or sleep staging is the process of classifying various sleep stages which helps to detect the quality of sleep. The identification of sleep-stages using electroencephalogram (EEG) signals is an arduous task. Just by looking at an EEG signal, one cannot determine the sleep stages precisely. Sleep specialists may make errors in identifying sleep stages by visual inspection. To mitigate the erroneous identification and to reduce the burden on doctors, a computer-aided EEG based system can be deployed in the hospitals, which can help identify the sleep stages, correctly. Several automated systems based on the analysis of polysomnographic (PSG) signals have been proposed. A few sleep stage scoring systems using EEG signals have also been proposed. But, still there is a need for a robust and accurate portable system developed using huge dataset. In this study, we have developed a new single-channel EEG based sleep-stages identification system using a novel set of wavelet-based features extracted from a large EEG dataset. We employed a novel three-band time-frequency localized (TBTFL) wavelet filter bank (FB). The EEG signals are decomposed using three-level wavelet decomposition, yielding seven sub-bands (SBs). This is followed by the computation of discriminating features namely, log-energy (LE), signal-fractal-dimensions (SFD), and signal-sample-entropy (SSE) from all seven SBs. The extracted features are ranked and fed to the support vector machine (SVM) and other supervised learning classifiers. In this study, we have considered five different classification problems (CPs), (two-class (CP-1), three-class (CP-2), four-class (CP-3), five-class (CP-4) and six-class (CP-5)). The proposed system yielded accuracies of 98.3%, 93.9%, 92.1%, 91.7%, and 91.5% for CP-1 to CP-5, respectively, using 10-fold cross validation (CV) technique.
  14. Oyehan TA, Alade IO, Bagudu A, Sulaiman KO, Olatunji SO, Saleh TA
    Comput Biol Med, 2018 07 01;98:85-92.
    PMID: 29777986 DOI: 10.1016/j.compbiomed.2018.04.024
    The optical properties of blood play crucial roles in medical diagnostics and treatment, and in the design of new medical devices. Haemoglobin is a vital constituent of the blood whose optical properties affect all of the optical properties of human blood. The refractive index of haemoglobin has been reported to strongly depend on its concentration which is a function of the physiology of biological cells. This makes the refractive index of haemoglobin an essential non-invasive bio-marker of diseases. Unfortunately, the complexity of blood tissue makes it challenging to experimentally measure the refractive index of haemoglobin. While a few studies have reported on the refractive index of haemoglobin, there is no solid consensus with the data obtained due to different measuring instruments and the conditions of the experiments. Moreover, obtaining the refractive index via an experimental approach is quite laborious. In this work, an accurate, fast and relatively convenient strategy to estimate the refractive index of haemoglobin is reported. Thus, the GA-SVR model is presented for the prediction of the refractive index of haemoglobin using wavelength, temperature, and the concentration of haemoglobin as descriptors. The model developed is characterised by an excellent accuracy and very low error estimates. The correlation coefficients obtained in these studies are 99.94% and 99.91% for the training and testing results, respectively. In addition, the result shows an almost perfect match with the experimental data and also demonstrates significant improvement over a recent mathematical model available in the literature. The GA-SVR model predictions also give insights into the influence of concentration, wavelength, and temperature on the RI measurement values. The model outcome can be used not only to accurately estimate the refractive index of haemoglobin but also could provide a reliable common ground to benchmark the experimental refractive index results.
  15. Masni-Azian, Tanaka M
    Comput Biol Med, 2018 07 01;98:26-38.
    PMID: 29758454 DOI: 10.1016/j.compbiomed.2018.05.010
    Intervertebral disc degeneration involves changes in its material properties that affect the mechanical functions of the spinal system. However, the alteration of the biomechanics of a spinal segment through specific material degradation in a specific region is poorly understood. In this study, the influence of the constitutive material degeneration of disc tissues on the mechanics of a lower lumbar spinal unit was examined using a three-dimensional nonlinear finite element model of the L4-L5 functional spinal unit. Different grades of disc degeneration were simulated by introducing a degeneration factor to the corresponding material properties to represent fibrous nucleus, increased fibre and ground substance laxity, increased fibre stiffness and total annular fracture along posterior and posterolateral regions. The model was loaded with an axial compression of 500 N and pure moments of up to 10 Nm to simulate extension, flexion, lateral bending and axial rotation. To validate the model, the spinal motion and intradiscal pressure of healthy and degenerated discs with existing in vitro data were compared. The disc with a fibrous nucleus and the presence of intradiscal pressure increase the spinal instability during flexion and axial rotation, and the absence of intradiscal pressure increases the spinal instability in all directions. Bulging displacement and shear strains in the disc with total fracture and ground substance laxity are high in all of the loading cases. Our study could provide useful information to enhance our understanding of the influence of each constitutive component of the intervertebral disc on the mechanics of the spinal segment.
  16. Raghavendra U, Gudigar A, Maithri M, Gertych A, Meiburger KM, Yeong CH, et al.
    Comput Biol Med, 2018 04 01;95:55-62.
    PMID: 29455080 DOI: 10.1016/j.compbiomed.2018.02.002
    Ultrasound imaging is one of the most common visualizing tools used by radiologists to identify the location of thyroid nodules. However, visual assessment of nodules is difficult and often affected by inter- and intra-observer variabilities. Thus, a computer-aided diagnosis (CAD) system can be helpful to cross-verify the severity of nodules. This paper proposes a new CAD system to characterize thyroid nodules using optimized multi-level elongated quinary patterns. In this study, higher order spectral (HOS) entropy features extracted from these patterns appropriately distinguished benign and malignant nodules under particle swarm optimization (PSO) and support vector machine (SVM) frameworks. Our CAD algorithm achieved a maximum accuracy of 97.71% and 97.01% in private and public datasets respectively. The evaluation of this CAD system on both private and public datasets confirmed its effectiveness as a secondary tool in assisting radiological findings.
  17. Acharya UR, Koh JEW, Hagiwara Y, Tan JH, Gertych A, Vijayananthan A, et al.
    Comput Biol Med, 2018 03 01;94:11-18.
    PMID: 29353161 DOI: 10.1016/j.compbiomed.2017.12.024
    Liver is the heaviest internal organ of the human body and performs many vital functions. Prolonged cirrhosis and fatty liver disease may lead to the formation of benign or malignant lesions in this organ, and an early and reliable evaluation of these conditions can improve treatment outcomes. Ultrasound imaging is a safe, non-invasive, and cost-effective way of diagnosing liver lesions. However, this technique has limited performance in determining the nature of the lesions. This study initiates a computer-aided diagnosis (CAD) system to aid radiologists in an objective and more reliable interpretation of ultrasound images of liver lesions. In this work, we have employed radon transform and bi-directional empirical mode decomposition (BEMD) to extract features from the focal liver lesions. After which, the extracted features were subjected to particle swarm optimization (PSO) technique for the selection of a set of optimized features for classification. Our automated CAD system can differentiate normal, malignant, and benign liver lesions using machine learning algorithms. It was trained using 78 normal, 26 benign and 36 malignant focal lesions of the liver. The accuracy, sensitivity, and specificity of lesion classification were 92.95%, 90.80%, and 97.44%, respectively. The proposed CAD system is fully automatic as no segmentation of region-of-interest (ROI) is required.
  18. Tan JH, Hagiwara Y, Pang W, Lim I, Oh SL, Adam M, et al.
    Comput Biol Med, 2018 03 01;94:19-26.
    PMID: 29358103 DOI: 10.1016/j.compbiomed.2017.12.023
    Coronary artery disease (CAD) is the most common cause of heart disease globally. This is because there is no symptom exhibited in its initial phase until the disease progresses to an advanced stage. The electrocardiogram (ECG) is a widely accessible diagnostic tool to diagnose CAD that captures abnormal activity of the heart. However, it lacks diagnostic sensitivity. One reason is that, it is very challenging to visually interpret the ECG signal due to its very low amplitude. Hence, identification of abnormal ECG morphology by clinicians may be prone to error. Thus, it is essential to develop a software which can provide an automated and objective interpretation of the ECG signal. This paper proposes the implementation of long short-term memory (LSTM) network with convolutional neural network (CNN) to automatically diagnose CAD ECG signals accurately. Our proposed deep learning model is able to detect CAD ECG signals with a diagnostic accuracy of 99.85% with blindfold strategy. The developed prototype model is ready to be tested with an appropriate huge database before the clinical usage.
  19. Koh JEW, Ng EYK, Bhandary SV, Hagiwara Y, Laude A, Acharya UR
    Comput Biol Med, 2018 01 01;92:204-209.
    PMID: 29227822 DOI: 10.1016/j.compbiomed.2017.11.019
    Untreated age-related macular degeneration (AMD), diabetic retinopathy (DR), and glaucoma may lead to irreversible vision loss. Hence, it is essential to have regular eye screening to detect these eye diseases at an early stage and to offer treatment where appropriate. One of the simplest, non-invasive and cost-effective techniques to screen the eyes is by using fundus photo imaging. But, the manual evaluation of fundus images is tedious and challenging. Further, the diagnosis made by ophthalmologists may be subjective. Therefore, an objective and novel algorithm using the pyramid histogram of visual words (PHOW) and Fisher vectors is proposed for the classification of fundus images into their respective eye conditions (normal, AMD, DR, and glaucoma). The proposed algorithm extracts features which are represented as words. These features are built and encoded into a Fisher vector for classification using random forest classifier. This proposed algorithm is validated with both blindfold and ten-fold cross-validation techniques. An accuracy of 90.06% is achieved with the blindfold method, and highest accuracy of 96.79% is obtained with ten-fold cross-validation. The highest classification performance of our system shows the potential of deploying it in polyclinics to assist healthcare professionals in their initial diagnosis of the eye. Our developed system can reduce the workload of ophthalmologists significantly.
  20. Meiburger KM, Acharya UR, Molinari F
    Comput Biol Med, 2018 01 01;92:210-235.
    PMID: 29247890 DOI: 10.1016/j.compbiomed.2017.11.018
    B-mode ultrasound imaging is used extensively in medicine. Hence, there is a need to have efficient segmentation tools to aid in computer-aided diagnosis, image-guided interventions, and therapy. This paper presents a comprehensive review on automated localization and segmentation techniques for B-mode ultrasound images. The paper first describes the general characteristics of B-mode ultrasound images. Then insight on the localization and segmentation of tissues is provided, both in the case in which the organ/tissue localization provides the final segmentation and in the case in which a two-step segmentation process is needed, due to the desired boundaries being too fine to locate from within the entire ultrasound frame. Subsequenly, examples of some main techniques found in literature are shown, including but not limited to shape priors, superpixel and classification, local pixel statistics, active contours, edge-tracking, dynamic programming, and data mining. Ten selected applications (abdomen/kidney, breast, cardiology, thyroid, liver, vascular, musculoskeletal, obstetrics, gynecology, prostate) are then investigated in depth, and the performances of a few specific applications are compared. In conclusion, future perspectives for B-mode based segmentation, such as the integration of RF information, the employment of higher frequency probes when possible, the focus on completely automatic algorithms, and the increase in available data are discussed.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links