Displaying publications 61 - 80 of 148 in total

Abstract:
Sort:
  1. El Sayed I, Liu Q, Wee I, Hine P
    Cochrane Database Syst Rev, 2018 09 24;9:CD002150.
    PMID: 30246875 DOI: 10.1002/14651858.CD002150.pub2
    BACKGROUND: Scrub typhus, an important cause of acute fever in Asia, is caused by Orientia tsutsugamushi, an obligate intracellular bacterium. Antibiotics currently used to treat scrub typhus include tetracyclines, chloramphenicol, macrolides, and rifampicin.

    OBJECTIVES: To assess and compare the effects of different antibiotic regimens for treatment of scrub typhus.

    SEARCH METHODS: We searched the following databases up to 8 January 2018: the Cochrane Infectious Diseases Group specialized trials register; CENTRAL, in the Cochrane Library (2018, Issue 1); MEDLINE; Embase; LILACS; and the metaRegister of Controlled Trials (mRCT). We checked references and contacted study authors for additional data. We applied no language or date restrictions.

    SELECTION CRITERIA: Randomized controlled trials (RCTs) or quasi-RCTs comparing antibiotic regimens in people with the diagnosis of scrub typhus based on clinical symptoms and compatible laboratory tests (excluding the Weil-Felix test).

    DATA COLLECTION AND ANALYSIS: For this update, two review authors re-extracted all data and assessed the certainty of evidence. We meta-analysed data to calculate risk ratios (RRs) for dichotomous outcomes when appropriate, and elsewhere tabulated data to facilitate narrative analysis.

    MAIN RESULTS: We included six RCTs and one quasi-RCT with 548 participants; they took place in the Asia-Pacific region: Korea (three trials), Malaysia (one trial), and Thailand (three trials). Only one trial included children younger than 15 years (N = 57). We judged five trials to be at high risk of performance and detection bias owing to inadequate blinding. Trials were heterogenous in terms of dosing of interventions and outcome measures. Across trials, treatment failure rates were low.Two trials compared doxycycline to tetracycline. For treatment failure, the difference between doxycycline and tetracycline is uncertain (very low-certainty evidence). Doxycycline compared to tetracycline may make little or no difference in resolution of fever within 48 hours (risk ratio (RR) 1.14, 95% confidence interval (CI) 0.90 to 1.44, 55 participants; one trial; low-certainty evidence) and in time to defervescence (116 participants; one trial; low-certainty evidence). We were unable to extract data for other outcomes.Three trials compared doxycycline versus macrolides. For most outcomes, including treatment failure, resolution of fever within 48 hours, time to defervescence, and serious adverse events, we are uncertain whether study results show a difference between doxycycline and macrolides (very low-certainty evidence). Macrolides compared to doxycycline may make little or no difference in the proportion of patients with resolution of fever within five days (RR 1.05, 95% CI 0.99 to 1.10; 185 participants; two trials; low-certainty evidence). Another trial compared azithromycin versus doxycycline or chloramphenicol in children, but we were not able to disaggregate date for the doxycycline/chloramphenicol group.One trial compared doxycycline versus rifampicin. For all outcomes, we are uncertain whether study results show a difference between doxycycline and rifampicin (very low-certainty evidence). Of note, this trial deviated from the protocol after three out of eight patients who had received doxycycline and rifampicin combination therapy experienced treatment failure.Across trials, mild gastrointestinal side effects appeared to be more common with doxycycline than with comparator drugs.

    AUTHORS' CONCLUSIONS: Tetracycline, doxycycline, azithromycin, and rifampicin are effective treatment options for scrub typhus and have resulted in few treatment failures. Chloramphenicol also remains a treatment option, but we could not include this among direct comparisons in this review.Most available evidence is of low or very low certainty. For specific outcomes, some low-certainty evidence suggests there may be little or no difference between tetracycline, doxycycline, and azithromycin as treatment options. Given very low-certainty evidence for rifampicin and the risk of inducing resistance in undiagnosed tuberculosis, clinicians should not regard this as a first-line treatment option. Clinicians could consider rifampicin as a second-line treatment option after exclusion of active tuberculosis.Further research should consist of additional adequately powered trials of doxycycline versus azithromycin or other macrolides, trials of other candidate antibiotics including rifampicin, and trials of treatments for severe scrub typhus. Researchers should standardize diagnostic techniques and reporting of clinical outcomes to allow robust comparisons.

  2. Abdul Wahid SF, Ismail NA, Wan Jamaludin WF, Muhamad NA, Abdul Hamid MKA, Harunarashid H, et al.
    Cochrane Database Syst Rev, 2018 Aug 29;8(8):CD010747.
    PMID: 30155883 DOI: 10.1002/14651858.CD010747.pub2
    BACKGROUND: Revascularisation is the gold standard therapy for patients with critical limb ischaemia (CLI). In over 30% of patients who are not suitable for or have failed previous revascularisation therapy (the 'no-option' CLI patients), limb amputation is eventually unavoidable. Preliminary studies have reported encouraging outcomes with autologous cell-based therapy for the treatment of CLI in these 'no-option' patients. However, studies comparing the angiogenic potency and clinical effects of autologous cells derived from different sources have yielded limited data. Data regarding cell doses and routes of administration are also limited.

    OBJECTIVES: To compare the efficacy and safety of autologous cells derived from different sources, prepared using different protocols, administered at different doses, and delivered via different routes for the treatment of 'no-option' CLI patients.

    SEARCH METHODS: The Cochrane Vascular Information Specialist (CIS) searched the Cochrane Vascular Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE Ovid, Embase Ovid, the Cumulative Index to Nursing and Allied Health Literature (CINAHL), the Allied and Complementary Medicine Database (AMED), and trials registries (16 May 2018). Review authors searched PubMed until February 2017.

    SELECTION CRITERIA: We included randomised controlled trials (RCTs) involving 'no-option' CLI patients comparing a particular source or regimen of autologous cell-based therapy against another source or regimen of autologous cell-based therapy.

    DATA COLLECTION AND ANALYSIS: Three review authors independently assessed the eligibility and methodological quality of the trials. We extracted outcome data from each trial and pooled them for meta-analysis. We calculated effect estimates using a risk ratio (RR) with 95% confidence interval (CI), or a mean difference (MD) with 95% CI.

    MAIN RESULTS: We included seven RCTs with a total of 359 participants. These studies compared bone marrow-mononuclear cells (BM-MNCs) versus mobilised peripheral blood stem cells (mPBSCs), BM-MNCs versus bone marrow-mesenchymal stem cells (BM-MSCs), high cell dose versus low cell dose, and intramuscular (IM) versus intra-arterial (IA) routes of cell implantation. We identified no other comparisons in these studies. We considered most studies to be at low risk of bias in random sequence generation, incomplete outcome data, and selective outcome reporting; at high risk of bias in blinding of patients and personnel; and at unclear risk of bias in allocation concealment and blinding of outcome assessors. The quality of evidence was most often low to very low, with risk of bias, imprecision, and indirectness of outcomes the major downgrading factors.Three RCTs (100 participants) reported a total of nine deaths during the study follow-up period. These studies did not report deaths according to treatment group.Results show no clear difference in amputation rates between IM and IA routes (RR 0.80, 95% CI 0.54 to 1.18; three RCTs, 95 participants; low-quality evidence). Single-study data show no clear difference in amputation rates between BM-MNC- and mPBSC-treated groups (RR 1.54, 95% CI 0.45 to 5.24; 150 participants; low-quality evidence) and between high and low cell dose (RR 3.21, 95% CI 0.87 to 11.90; 16 participants; very low-quality evidence). The study comparing BM-MNCs versus BM-MSCs reported no amputations.Single-study data with low-quality evidence show similar numbers of participants with healing ulcers between BM-MNCs and mPBSCs (RR 0.89, 95% CI 0.44 to 1.83; 49 participants) and between IM and IA routes (RR 1.13, 95% CI 0.73 to 1.76; 41 participants). In contrast, more participants appeared to have healing ulcers in the BM-MSC group than in the BM-MNC group (RR 2.00, 95% CI 1.02 to 3.92; one RCT, 22 participants; moderate-quality evidence). Researchers comparing high versus low cell doses did not report ulcer healing.Single-study data show similar numbers of participants with reduction in rest pain between BM-MNCs and mPBSCs (RR 0.99, 95% CI 0.93 to 1.06; 104 participants; moderate-quality evidence) and between IM and IA routes (RR 1.22, 95% CI 0.91 to 1.64; 32 participants; low-quality evidence). One study reported no clear difference in rest pain scores between BM-MNC and BM-MSC (MD 0.00, 95% CI -0.61 to 0.61; 37 participants; moderate-quality evidence). Trials comparing high versus low cell doses did not report rest pain.Single-study data show no clear difference in the number of participants with increased ankle-brachial index (ABI; increase of > 0.1 from pretreatment), between BM-MNCs and mPBSCs (RR 1.00, 95% CI 0.71 to 1.40; 104 participants; moderate-quality evidence), and between IM and IA routes (RR 0.93, 95% CI 0.43 to 2.00; 35 participants; very low-quality evidence). In contrast, ABI scores appeared higher in BM-MSC versus BM-MNC groups (MD 0.05, 95% CI 0.01 to 0.09; one RCT, 37 participants; low-quality evidence). ABI was not reported in the high versus low cell dose comparison.Similar numbers of participants had improved transcutaneous oxygen tension (TcO₂) with IM versus IA routes (RR 1.22, 95% CI 0.86 to 1.72; two RCTs, 62 participants; very low-quality evidence). Single-study data with low-quality evidence show a higher TcO₂ reading in BM-MSC versus BM-MNC groups (MD 8.00, 95% CI 3.46 to 12.54; 37 participants) and in mPBSC- versus BM-MNC-treated groups (MD 1.70, 95% CI 0.41 to 2.99; 150 participants). TcO₂ was not reported in the high versus low cell dose comparison.Study authors reported no significant short-term adverse effects attributed to autologous cell implantation.

    AUTHORS' CONCLUSIONS: Mostly low- and very low-quality evidence suggests no clear differences between different stem cell sources and different treatment regimens of autologous cell implantation for outcomes such as all-cause mortality, amputation rate, ulcer healing, and rest pain for 'no-option' CLI patients. Pooled analyses did not show a clear difference in clinical outcomes whether cells were administered via IM or IA routes. High-quality evidence is lacking; therefore the efficacy and long-term safety of autologous cells derived from different sources, prepared using different protocols, administered at different doses, and delivered via different routes for the treatment of 'no-option' CLI patients, remain to be confirmed.Future RCTs with larger numbers of participants are needed to determine the efficacy of cell-based therapy for CLI patients, along with the optimal cell source, phenotype, dose, and route of implantation. Longer follow-up is needed to confirm the durability of angiogenic potential and the long-term safety of cell-based therapy.

  3. Kiran Kumar Krishanappa S, Eachempati P, Kumbargere Nagraj S, Shetty NY, Moe S, Aggarwal H, et al.
    Cochrane Database Syst Rev, 2018 08 16;8:CD011784.
    PMID: 30113083 DOI: 10.1002/14651858.CD011784.pub3
    BACKGROUND: An oro-antral communication is an unnatural opening between the oral cavity and maxillary sinus. When it fails to close spontaneously, it remains patent and is epithelialized to develop into an oro-antral fistula. Various surgical and non-surgical techniques have been used for treating the condition. Surgical procedures include flaps, grafts and other techniques like re-implantation of third molars. Non-surgical techniques include allogenic materials and xenografts. This is an update of a review first published in May 2016.

    OBJECTIVES: To assess the effectiveness and safety of various interventions for the treatment of oro-antral communications and fistulae due to dental procedures.

    SEARCH METHODS: Cochrane Oral Health's Information Specialist searched the following databases: Cochrane Oral Health's Trials Register (to 23 May 2018), the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library, 2018, Issue 4), MEDLINE Ovid (1946 to 23 May 2018), and Embase Ovid (1980 to 23 May 2018). The US National Institutes of Health Trials Registry (ClinicalTrials.gov) and the World Health Organization International Clinical Trials Registry Platform were searched for ongoing trials. No restrictions were placed on the language or date of publication when searching the electronic databases. We also searched the reference lists of included and excluded trials for any randomised controlled trials (RCTs).

    SELECTION CRITERIA: We included RCTs evaluating any intervention for treating oro-antral communications or oro-antral fistulae due to dental procedures. We excluded quasi-RCTs and cross-over trials. We excluded studies on participants who had oro-antral communications, fistulae or both related to Caldwell-Luc procedure or surgical excision of tumours.

    DATA COLLECTION AND ANALYSIS: Two review authors independently selected trials. Two review authors assessed trial risk of bias and extracted data independently. We estimated risk ratios (RR) for dichotomous data, with 95% confidence intervals (CI). We assessed the overall quality of the evidence using the GRADE approach.

    MAIN RESULTS: We included only one study in this review, which compared two surgical interventions: pedicled buccal fat pad flap and buccal flap for the treatment of oro-antral communications. The study involved 20 participants. The risk of bias was unclear. The relevant outcome reported in this trial was successful (complete) closure of oro-antral communication.The quality of the evidence for the primary outcome was very low. The study did not find evidence of a difference between interventions for the successful (complete) closure of an oro-antral communication (RR 1.00, 95% Cl 0.83 to 1.20) one month after the surgery. All oro-antral communications in both groups were successfully closed so there were no adverse effects due to treatment failure.We did not find trials evaluating any other intervention for treating oro-antral communications or fistulae due to dental procedures.

    AUTHORS' CONCLUSIONS: We found very low quality evidence from a single small study that compared pedicled buccal fat pad and buccal flap. The evidence was insufficient to judge whether there is a difference in the effectiveness of these interventions as all oro-antral communications in the study were successfully closed by one month after surgery. Large, well-conducted RCTs investigating different interventions for the treatment of oro-antral communications and fistulae caused by dental procedures are needed to inform clinical practice.

  4. Wahabi HA, Fayed AA, Esmaeil SA, Bahkali KH
    Cochrane Database Syst Rev, 2018 08 06;8:CD005943.
    PMID: 30081430 DOI: 10.1002/14651858.CD005943.pub5
    BACKGROUND: Miscarriage is a common complication encountered during pregnancy. It is defined as spontaneous pregnancy loss before 20 weeks' gestation. Progesterone's physiological role is to prepare the uterus for the implantation of the embryo, enhance uterine quiescence and suppress uterine contractions, hence, it may play a role in preventing rejection of the embryo. Inadequate secretion of progesterone in early pregnancy has been linked to the aetiology of miscarriage and progesterone supplementation has been used as a treatment for threatened miscarriage to prevent spontaneous pregnancy loss. This update of the Cochrane Review first published in 2007, and previously updated in 2011, investigates the evidence base for this practice.

    OBJECTIVES: To determine the efficacy and the safety of progestogens in the treatment of threatened miscarriage.

    SEARCH METHODS: We searched Cochrane Pregnancy and Childbirth's Trials Register, ClinicalTrials.gov and the WHO International Clinical Trials Registry Platform (ICTRP) (8 August 2017) and reference lists of retrieved trials.

    SELECTION CRITERIA: Randomised, quasi-randomised or cluster-randomised controlled trials, that compared progestogen with placebo, no treatment or any other treatment for the treatment of threatened miscarriage in women carrying singleton pregnancy.

    DATA COLLECTION AND ANALYSIS: At least two review authors assessed the trials for inclusion in the review, assessed trial quality and extracted the data and graded the body of evidence.

    MAIN RESULTS: We included seven trials (involving 696 participants) in this update of the review. The included trials were conducted in different countries, covering the full spectrum of the World Bank's economic classification, which enhances the applicability of evidence drawn from this review. Two trials were conducted in Germany and Italy which are high-income countries, while four trials were conducted in upper-middle income countries; two in Iran, one in Malaysia and the fourth in Turkey, and the seventh trial was conducted in Jordan, which is a lower-middle income country. In six trials all the participants met the inclusion criteria and in the seventh study, we included in the meta-analysis only the subgroup of participants who met the inclusion criteria. We assessed the body of evidence for the main outcomes using the GRADE tool and the quality of the evidence ranged from very low to moderate. Downgrading of evidence was based on the high risk of bias in six of the seven included trials and a small number of events and wide confidence intervals for some outcomes.Treatment of miscarriage with progestogens compared to placebo or no treatment probably reduces the risk of miscarriage; (risk ratio (RR) 0.64, 95% confidence interval (CI) 0.47 to 0.87; 7 trials; 696 women; moderate-quality evidence). Treatment with oral progestogen compared to no treatment also probably reduces the miscarriage rate (RR 0.57, 95% CI 0.38 to 0.85; 3 trials; 408 women; moderate-quality evidence). However treatment with vaginal progesterone compared to placebo, probably has little or no effect in reducing the miscarriage rate (RR 0.75, 95% CI 0.47 to 1.21; 4 trials; 288 women; moderate-quality evidence). The subgroup interaction test indicated no difference according to route of administration between the oral and vaginal subgroups of progesterone.Treatment of preterm birth with the use of progestogens compared to placebo or no treatment may have little or no effect in reducing the rate of preterm birth (RR 0.86, 95% CI 0.52 to 1.44; 5 trials; 588 women; low-quality evidence).We are uncertain if treatment of threatened miscarriage with progestogens compared to placebo or no treatment has any effect on the rate of congenital abnormalities because the quality of the evidence is very low (RR 0.70, 95% CI 0.10 to 4.82; 2 trials; 337 infants; very-low quality evidence).

    AUTHORS' CONCLUSIONS: The results of this Cochrane Review suggest that progestogens are probably effective in the treatment of threatened miscarriage but may have little or no effect in the rate of preterm birth. The evidence on congenital abnormalities is uncertain, because the quality of the evidence for this outcome was based on only two small trials with very few events and was found to be of very low quality.

  5. Dixit R, Nettem S, Madan SS, Soe HHK, Abas AB, Vance LD, et al.
    Cochrane Database Syst Rev, 2018 Mar 16;3(3):CD011130.
    PMID: 29546732 DOI: 10.1002/14651858.CD011130.pub3
    BACKGROUND: Sickle cell disease (SCD) is a group of disorders that affects haemoglobin, which causes distorted sickle- or crescent-shaped red blood cells. It is characterized by anaemia, increased susceptibility to infections and episodes of pain. The disease is acquired by inheriting abnormal genes from both parents, the combination giving rise to different forms of the disease. Due to increased erythropoiesis in people with SCD, it is hypothesized that they are at an increased risk for folate deficiency. For this reason, children and adults with SCD, particularly those with sickle cell anaemia, commonly take 1 mg of folic acid orally every day on the premise that this will replace depleted folate stores and reduce the symptoms of anaemia. It is thus important to evaluate the role of folate supplementation in treating SCD.

    OBJECTIVES: To analyse the efficacy and possible adverse effects of folate supplementation (folate occurring naturally in foods, provided as fortified foods or additional supplements such as tablets) in people with SCD.

    SEARCH METHODS: We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group's Haemoglobinopathies Trials Register comprising references identified from comprehensive electronic database searches and handsearches of relevant journals and abstract books of conference proceedings. We also conducted additional searches in both electronic databases and clinical trial registries.Date of last search of the Cochrane Cystic Fibrosis and Genetic Disorders Group's Haemoglobinopathies Trials Register: 17 November 2017.

    SELECTION CRITERIA: Randomised, placebo-controlled trials of folate supplementation for SCD.

    DATA COLLECTION AND ANALYSIS: Four review authors assessed We used the standard Cochrane-defined methodological procedures.Four review authors independently assessed the eligibility and risk of bias of the included trials and extracted and analysed the data included in the review. The quality of the evidence was assessed using GRADE.

    MAIN RESULTS: One trial, undertaken in 1983, was eligible for inclusion in the review. This was a double-blind placebo-controlled quasi-randomised triaI of supplementation of folic acid in people with SCD. A total of 117 children with homozygous sickle cell (SS) disease aged six months to four years of age participated over a one-year period (analysis was restricted to 115 children).Serum folate measures, obtained after trial entry at six and 12 months, were available in 80 of 115 (70%) participants. There were significant differences between the folic acid and placebo groups with regards to serum folate values above 18 µg/L and values below 5 µg/L (low-quality evidence). In the folic acid group, values above 18 µg/L were observed in 33 of 41 (81%) compared to six of 39 (15%) participants in the placebo (calcium lactate) group. Additionally, there were no participants in the folic acid group with serum folate levels below 5 µg/L, whereas in the placebo group, 15 of 39 (39%) participants had levels below this threshold. Haematological indices were measured in 100 of 115 (87%) participants at baseline and at one year. After adjusting for sex and age group, the investigators reported no significant differences between the trial groups with regards to total haemoglobin concentrations, either at baseline or at one year (low-quality evidence). It is important to note that none of the raw data for the outcomes listed above were available for analysis.The proportions of participants who experienced certain clinical events were analysed in all 115 participants, for which raw data were available. There were no statistically significant differences noted; however, the trial was not powered to investigate differences between the folic acid and placebo groups with regards to: minor infections, risk ratio (RR) 0.99 (95% confidence interval (CI) 0.85 to 1.15) (low-quality evidence); major infections, RR 0.89 (95% CI 0.47 to 1.66) (low-quality evidence); dactylitis, RR 0.67 (95% CI 0.35 to 1.27) (low-quality evidence); acute splenic sequestration, RR 1.07 (95% CI 0.44 to 2.57) (low-quality evidence); or episodes of pain, RR 1.16 (95% CI 0.70 to 1.92) (low-quality evidence). However, the investigators reported a higher proportion of repeat dactylitis episodes in the placebo group, with two or more attacks occurring in 10 of 56 participants compared to two of 59 in the folic acid group (P < 0.05).Growth, determined by height-for-age and weight-for-age, as well as height and growth velocity, was measured in 103 of the 115 participants (90%), for which raw data were not available. The investigators reported no significant differences in growth between the two groups.The trial had a high risk of bias with regards to random sequence generation and incomplete outcome data. There was an unclear risk of bias in relation to allocation concealment, outcome assessment, and selective reporting. Finally, There was a low risk of bias with regards to blinding of participants and personnel. Overall the quality of the evidence in the review was low.There were no trials identified for other eligible comparisons, namely: folate supplementation (fortified foods and physical supplementation with tablets) versus placebo; folate supplementation (naturally occurring in diet) versus placebo; folate supplementation (fortified foods and physical supplementation with tablets) versus folate supplementation (naturally occurring in diet).

    AUTHORS' CONCLUSIONS: One doubIe-blind, placebo-controlled triaI on folic acid supplementation in children with SCD was included in the review. Overall, the trial presented mixed evidence on the review's outcomes. No trials in adults were identified. With the limited evidence provided, we conclude that, while it is possible that folic acid supplementation may increase serum folate levels, the effect of supplementation on anaemia and any symptoms of anaemia remains unclear.If further trials were conducted, these may add evidence regarding the efficacy of folate supplementation. Future trials should assess clinical outcomes such as folate concentration, haemoglobin concentration, adverse effects and benefits of the intervention, especially with regards to SCD-related morbidity. Such trials should include people with SCD of all ages and both sexes, in any setting. To investigate the effects of folate supplementation, trials should recruit more participants and be of longer duration, with long-term follow-up, than the trial currently included in this review. However, we do not envisage further trials of this intervention will be conducted, and hence the review will no longer be regularly updated.

  6. Hussein N, Weng SF, Kai J, Kleijnen J, Qureshi N
    Cochrane Database Syst Rev, 2018 03 14;3:CD010849.
    PMID: 29537064 DOI: 10.1002/14651858.CD010849.pub3
    BACKGROUND: Globally, about five per cent of children are born with congenital or genetic disorders. The most common autosomal recessive conditions are thalassaemia, sickle cell disease, cystic fibrosis and Tay-Sachs disease, with higher carrier rates in specific patient populations. Identifying and counselling couples at genetic risk of the conditions before pregnancy enables them to make fully informed reproductive decisions, with some of these choices not being available if genetic counselling is only offered in an antenatal setting. This is an update of a previously published review.

    OBJECTIVES: To assess the effectiveness of systematic preconception genetic risk assessment to improve reproductive outcomes in women and their partners who are identified as carriers of thalassaemia, sickle cell disease, cystic fibrosis and Tay-Sachs disease in healthcare settings when compared to usual care.

    SEARCH METHODS: We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group's Trials Registers. In addition, we searched for all relevant trials from 1970 (or the date at which the database was first available if after 1970) to date using electronic databases (MEDLINE, Embase, CINAHL, PsycINFO), clinical trial databases (National Institutes of Health, Clinical Trials Search portal of the World Health Organization, metaRegister of controlled clinical trials), and hand searching of key journals and conference abstract books from 1998 to date (European Journal of Human Genetics, Genetics in Medicine, Journal of Community Genetics). We also searched the reference lists of relevant articles, reviews and guidelines and also contacted subject experts in the field to request any unpublished or other published trials.Date of latest search of the registers: 20 June 2017.Date of latest search of all other sources: 16 November 2017.

    SELECTION CRITERIA: Any randomised or quasi-randomised controlled trials (published or unpublished) comparing reproductive outcomes of systematic preconception genetic risk assessment for thalassaemia, sickle cell disease, cystic fibrosis and Tay-Sachs disease when compared to usual care.

    DATA COLLECTION AND ANALYSIS: We identified 25 papers, describing 16 unique trials which were potentially eligible for inclusion in the review. However, after assessment, no randomised controlled trials of preconception genetic risk assessment for thalassaemia, sickle cell disease, cystic fibrosis and Tay-Sachs disease were found.

    MAIN RESULTS: No randomised controlled trials of preconception genetic risk assessment for thalassaemia, sickle cell disease, cystic fibrosis and Tay-Sachs disease were included. One ongoing trial has been identified which may potentially eligible for inclusion once completed.

    AUTHORS' CONCLUSIONS: As no randomised controlled trials of preconception genetic risk assessment for thalassaemia, sickle cell disease, cystic fibrosis, or Tay-Sachs disease were found for inclusion in this review, the research evidence for current policy recommendations is limited to non-randomised studies.Information from well-designed, adequately powered, randomised trials is desirable in order to make more robust recommendations for practice. However, such trials must also consider the legal, ethical, and cultural barriers to implementation of preconception genetic risk assessment.

  7. Kumbargere Nagraj S, Prashanti E, Aggarwal H, Lingappa A, Muthu MS, Kiran Kumar Krishanappa S, et al.
    Cochrane Database Syst Rev, 2018 Mar 04;3(3):CD011930.
    PMID: 29502332 DOI: 10.1002/14651858.CD011930.pub3
    BACKGROUND: Post-extraction bleeding (PEB) is a recognised, frequently encountered complication in dental practice, which is defined as bleeding that continues beyond 8 to 12 hours after dental extraction. The incidence of post-extraction bleeding varies from 0% to 26%. If post-extraction bleeding is not managed, complications can range from soft tissue haematomas to severe blood loss. Local causes of bleeding include soft tissue and bone bleeding. Systemic causes include platelet problems, coagulation disorders or excessive fibrinolysis, and inherited or acquired problems (medication induced). There is a wide array of techniques suggested for the treatment of post-extraction bleeding, which include interventions aimed at both local and systemic causes. This is an update of a review published in June 2016.

    OBJECTIVES: To assess the effects of interventions for treating different types of post-extraction bleeding.

    SEARCH METHODS: Cochrane Oral Health's Information Specialist searched the following databases: Cochrane Oral Health's Trials Register (to 24 January 2018), the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library, 2017, Issue 12), MEDLINE Ovid (1946 to 24 January 2018), Embase Ovid (1 May 2015 to 24 January 2018) and CINAHL EBSCO (1937 to 24 January 2018). The US National Institutes of Health Trials Registry (ClinicalTrials.gov) and the World Health Organization International Clinical Trials Registry Platform were searched for ongoing trials. We searched the reference lists of relevant systematic reviews.

    SELECTION CRITERIA: We considered randomised controlled trials (RCTs) that evaluated any intervention for treating PEB, with male or female participants of any age, regardless of type of teeth (anterior or posterior, mandibular or maxillary). Trials could compare one type of intervention with another, with placebo, or with no treatment.

    DATA COLLECTION AND ANALYSIS: Three pairs of review authors independently screened search records. We obtained full papers for potentially relevant trials. If data had been extracted, we would have followed the methods described in the Cochrane Handbook for Systematic Reviews of Interventions for the statistical analysis.

    MAIN RESULTS: We did not find any randomised controlled trial suitable for inclusion in this review.

    AUTHORS' CONCLUSIONS: We were unable to identify any reports of randomised controlled trials that evaluated the effects of different interventions for the treatment of post-extraction bleeding. In view of the lack of reliable evidence on this topic, clinicians must use their clinical experience to determine the most appropriate means of treating this condition, depending on patient-related factors. There is a need for well designed and appropriately conducted clinical trials on this topic, which conform to the CONSORT statement (www.consort-statement.org/).

  8. Arora A, Khattri S, Ismail NM, Kumbargere Nagraj S, Prashanti E
    Cochrane Database Syst Rev, 2017 12 21;12:CD012595.
    PMID: 29267989 DOI: 10.1002/14651858.CD012595.pub2
    BACKGROUND: School dental screening refers to visual inspection of children's oral cavity in a school setting followed by making parents aware of their child's current oral health status and treatment needs. Screening at school intends to identify children at an earlier stage than symptomatic disease presentation, hence prompting preventive and therapeutic oral health care for the children. This review evaluates the effectiveness of school dental screening in improving oral health status.

    OBJECTIVES: To assess the effectiveness of school dental screening programmes on overall oral health status and use of dental services.

    SEARCH METHODS: Cochrane Oral Health's Information Specialist searched the following databases: Cochrane Oral Health's Trials Register (to 15 March 2017), the Cochrane Central Register of Controlled Trials (CENTRAL, the Cochrane Register of Studies, to 15 March 2017), MEDLINE Ovid (1946 to 15 March 2017), and Embase Ovid (15 September 2016 to 15 March 2017). The US National Institutes of Health Trials Registry (ClinicalTrials.gov) and the World Health Organization International Clinical Trials Registry Platform were searched for ongoing trials. No restrictions were placed on language or publication status when searching the electronic databases; however, the search of Embase was restricted to the last six months due to the Cochrane Centralised Search Project to identify all clinical trials and add them to CENTRAL.

    SELECTION CRITERIA: We included randomised controlled trials (RCTs) (cluster or parallel) that evaluated school dental screening compared with no intervention or with one type of screening compared with another.

    DATA COLLECTION AND ANALYSIS: We used standard methodological procedures expected by Cochrane.

    MAIN RESULTS: We included six trials (four were cluster-RCTs) with 19,498 children who were 4 to 15 years of age. Four trials were conducted in the UK and two were based in India. We assessed two trials to be at low risk of bias, one trial to be at high risk of bias and three trials to be at unclear risk of bias.None of the six trials reported the proportion of children with untreated caries or other oral diseases.Four trials evaluated traditional screening versus no screening. We performed a meta-analysis for the outcome 'dental attendance' and found an inconclusive result with high heterogeneity. The heterogeneity was found it to be, in part, due to study design (three cluster-RCTs and one individual-level RCT). Due to the inconsistency, we downgraded the evidence to 'very low certainty' and are unable to draw conclusions about this comparison.Two cluster-RCTs (both four-arm trials) evaluated criteria-based screening versus no screening and showed a pooled effect estimate of RR 1.07 (95% CI 0.99 to 1.16), suggesting a possible benefit for screening (low-certainty evidence). There was no evidence of a difference when criteria-based screening was compared to traditional screening (RR 1.01, 95% CI 0.94 to 1.08) (very low-certainty evidence).In one trial, a specific (personalised) referral letter was compared to a non-specific one. Results favoured the specific referral letter with an effect estimate of RR 1.39 (95% CI 1.09 to 1.77) for attendance at general dentist services and effect estimate of RR 1.90 (95% CI 1.18 to 3.06) for attendance at specialist orthodontist services (low-certainty evidence).One trial compared screening supplemented with motivation to screening alone. Dental attendance was more likely after screening supplemented with motivation, with an effect estimate of RR 3.08 (95% CI 2.57 to 3.71) (low-certainty evidence).None of the trials had long-term follow-up to ascertain the lasting effects of school dental screening.None of the trials reported cost-effectiveness and adverse events.

    AUTHORS' CONCLUSIONS: The trials included in this review evaluated short-term effects of screening, assessing follow-up periods of three to eight months. We found very low certainty evidence that was insufficient to allow us to draw conclusions about whether there is a role for traditional school dental screening in improving dental attendance. For criteria-based screening, we found low-certainty evidence that it may improve dental attendance when compared to no screening. However, when compared to traditional screening there was no evidence of a difference in dental attendance (very low-certainty evidence).We found low-certainty evidence to conclude that personalised or specific referral letters improve dental attendance when compared to non-specific counterparts. We also found low-certainty evidence that screening supplemented with motivation (oral health education and offer of free treatment) improves dental attendance in comparison to screening alone.We did not find any trials addressing cost-effectiveness and adverse effects of school dental screening.

  9. Kumbargere Nagraj S, George RP, Shetty N, Levenson D, Ferraiolo DM, Shrestha A
    Cochrane Database Syst Rev, 2017 12 20;12:CD010470.
    PMID: 29260510 DOI: 10.1002/14651858.CD010470.pub3
    BACKGROUND: The sense of taste is very much essential to the overall health of an individual. It is a necessary component to enjoy one's food, which in turn provides nutrition to an individual. Any disturbance in taste perception can hamper quality of life in such patients by influencing their appetite, body weight and psychological well-being. Taste disorders have been treated using different modalities of treatment and there is no consensus for the best intervention. Hence this Cochrane Review was undertaken. This is an update of the Cochrane Review first published in November 2014.

    OBJECTIVES: To assess the effects of interventions for the management of patients with taste disturbances.

    SEARCH METHODS: Cochrane Oral Health's Information Specialist searched the following databases: Cochrane Oral Health's Trials Register (to 4 July 2017); the Cochrane Central Register of Controlled Trials (CENTRAL; 2017 Issue 6) in the Cochrane Library (searched 4 July 2017); MEDLINE Ovid (1946 to 4 July 2017); Embase Ovid (1980 to 4 July 2017); CINAHL EBSCO (1937 to 4 July 2017); and AMED Ovid (1985 to 4 July 2017). The US National Institutes of Health Ongoing Trials Register ClinicalTrials.gov (www.clinicaltrials.gov) and the World Health Organization International Clinical Trials Registry Platform were searched for trials. Abstracts from scientific meetings and conferences were searched on 25 September 2017. No restrictions were placed on the language or date of publication when searching the electronic databases.

    SELECTION CRITERIA: We included all randomised controlled trials (RCTs) comparing any pharmacological agent with a control intervention or any non-pharmacological agent with a control intervention. We also included cross-over trials in the review.

    DATA COLLECTION AND ANALYSIS: Two pairs of review authors independently, and in duplicate, assessed the quality of trials and extracted data. Wherever possible, we contacted trial authors for additional information. We collected adverse events information from the trials.

    MAIN RESULTS: We included 10 trials (581 participants), nine of which we were able to include in the quantitative analyses (566 participants). We assessed three trials (30%) as having a low risk of bias, four trials (40%) at high risk of bias and three trials (30%) as having an unclear risk of bias. We only included studies on taste disorders in this review that were either idiopathic, or resulting from zinc deficiency or chronic renal failure.Of these, nine trials with 544 people compared zinc supplements to placebo for patients with taste disorders. The participants in two trials were children and adolescents with respective mean ages of 10 and 11.2 years and the other seven trials had adult participants. Out of these nine, two trials assessed the patient-reported outcome for improvement in taste acuity using zinc supplements (risk ratio (RR) 1.40, 95% confidence interval (CI) 0.94 to 2.09; 119 participants, very low-quality evidence). We meta-analysed for taste acuity improvement using objective outcome (continuous data) in idiopathic and zinc-deficient taste disorder patients (standardised mean difference (SMD) 0.44, 95% CI 0.23 to 0.65; 366 participants, three trials, very low-quality evidence). We also analysed one cross-over trial separately using the first half of the results for taste detection (mean difference (MD) 2.50, 95% CI 0.93 to 4.07; 14 participants, very low-quality evidence), and taste recognition (MD 3.00, 95% CI 0.66 to 5.34; 14 participants, very low-quality evidence). We meta-analysed taste acuity improvement using objective outcome (dichotomous data) in idiopathic and zinc-deficient taste disorder patients (RR 1.42, 95% 1.09 to 1.84; 292 participants, two trials, very low-quality evidence). Out of the nine trials using zinc supplementation, four reported adverse events like eczema, nausea, abdominal pain, diarrhoea, constipation, decrease in blood iron, increase in blood alkaline phosphatase, and minor increase in blood triglycerides.One trial tested taste discrimination using acupuncture (MD 2.80, 95% CI -1.18 to 6.78; 37 participants, very low-quality evidence). No adverse events were reported in the acupuncture trial.None of the included trials could be included in the meta-analysis for health-related quality of life in taste disorder patients.

    AUTHORS' CONCLUSIONS: We found very low-quality evidence that was insufficient to conclude on the role of zinc supplements to improve taste acuity reported by patients and very low-quality evidence that zinc supplements improve taste acuity in patients with zinc deficiency/idiopathic taste disorders. We did not find any evidence to conclude the role of zinc supplements for improving taste discrimination, or any evidence addressing health-related quality of life due to taste disorders.We found very low-quality evidence that is not sufficient to conclude on the role of acupuncture for improving taste discrimination in cases of idiopathic dysgeusia (distortion of taste) and hypogeusia (reduced ability to taste). We were unable to draw any conclusions regarding the superiority of zinc supplements or acupuncture as none of the trials compared these interventions.

  10. Fong CY, Tay CG, Ong LC, Lai NM
    Cochrane Database Syst Rev, 2017 Nov 03;11(11):CD011786.
    PMID: 29099542 DOI: 10.1002/14651858.CD011786.pub2
    BACKGROUND: Paediatric neurodiagnostic investigations, including brain neuroimaging and electroencephalography (EEG), play an important role in the assessment of neurodevelopmental disorders. The use of an appropriate sedative agent is important to ensure the successful completion of the neurodiagnostic procedures, particularly in children, who are usually unable to remain still throughout the procedure.

    OBJECTIVES: To assess the effectiveness and adverse effects of chloral hydrate as a sedative agent for non-invasive neurodiagnostic procedures in children.

    SEARCH METHODS: We used the standard search strategy of the Cochrane Epilepsy Group. We searched MEDLINE (OVID SP) (1950 to July 2017), the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library, Issue 7, 2017), Embase (1980 to July 2017), and the Cochrane Epilepsy Group Specialized Register (via CENTRAL) using a combination of keywords and MeSH headings.

    SELECTION CRITERIA: We included randomised controlled trials that assessed chloral hydrate agent against other sedative agent(s), non-drug agent(s), or placebo for children undergoing non-invasive neurodiagnostic procedures.

    DATA COLLECTION AND ANALYSIS: Two review authors independently assessed the studies for their eligibility, extracted data, and assessed risk of bias. Results were expressed in terms of risk ratio (RR) for dichotomous data, mean difference (MD) for continuous data, with 95% confidence intervals (CIs).

    MAIN RESULTS: We included 13 studies with a total of 2390 children. The studies were all conducted in hospitals that provided neurodiagnostic services. Most studies assessed the proportion of sedation failure during the neurodiagnostic procedure, time for adequate sedation, and potential adverse effects associated with the sedative agent.The methodological quality of the included studies was mixed, as reflected by a wide variation in their 'Risk of bias' profiles. Blinding of the participants and personnel was not achieved in most of the included studies, and three of the 13 studies had high risk of bias for selective reporting. Evaluation of the efficacy of the sedative agents was also underpowered, with all the comparisons performed in single small studies.Children who received oral chloral hydrate had lower sedation failure when compared with oral promethazine (RR 0.11, 95% CI 0.01 to 0.82; 1 study, moderate-quality evidence). Children who received oral chloral hydrate had a higher risk of sedation failure after one dose compared to those who received intravenous pentobarbital (RR 4.33, 95% CI 1.35 to 13.89; 1 study, low-quality evidence), but after two doses there was no evidence of a significant difference between the two groups (RR 3.00, 95% CI 0.33 to 27.46; 1 study, very low-quality evidence). Children who received oral chloral hydrate appeared to have more sedation failure when compared with music therapy, but the quality of evidence was very low for this outcome (RR 17.00, 95% CI 2.37 to 122.14; 1 study). Sedation failure rates were similar between oral chloral hydrate, oral dexmedetomidine, oral hydroxyzine hydrochloride, and oral midazolam.Children who received oral chloral hydrate had a shorter time to achieve adequate sedation when compared with those who received oral dexmedetomidine (MD -3.86, 95% CI -5.12 to -2.6; 1 study, moderate-quality evidence), oral hydroxyzine hydrochloride (MD -7.5, 95% CI -7.85 to -7.15; 1 study, moderate-quality evidence), oral promethazine (MD -12.11, 95% CI -18.48 to -5.74; 1 study, moderate-quality evidence), and rectal midazolam (MD -95.70, 95% CI -114.51 to -76.89; 1 study). However, children with oral chloral hydrate took longer to achieve adequate sedation when compared with intravenous pentobarbital (MD 19, 95% CI 16.61 to 21.39; 1 study, low-quality evidence) and intranasal midazolam (MD 12.83, 95% CI 7.22 to 18.44; 1 study, moderate-quality evidence).No data were available to assess the proportion of children with successful completion of neurodiagnostic procedure without interruption by the child awakening. Most trials did not assess adequate sedation as measured by specific validated scales, except in the comparison of chloral hydrate versus intranasal midazolam and oral promethazine.Compared to dexmedetomidine, chloral hydrate was associated with a higher risk of nausea and vomiting (RR 12.04 95% CI 1.58 to 91.96). No other adverse events were significantly associated with chloral hydrate (including behavioural change, oxygen desaturation) although there was an increased risk of adverse events overall (RR 7.66, 95% CI 1.78 to 32.91; 1 study, low-quality evidence).

    AUTHORS' CONCLUSIONS: The quality of evidence for the comparisons of oral chloral hydrate against several other methods of sedation was very variable. Oral chloral hydrate appears to have a lower sedation failure rate when compared with oral promethazine for children undergoing paediatric neurodiagnostic procedures. The sedation failure was similar for other comparisons such as oral dexmedetomidine, oral hydroxyzine hydrochloride, and oral midazolam. When compared with intravenous pentobarbital and music therapy, oral chloral hydrate had a higher sedation failure rate. However, it must be noted that the evidence for the outcomes for the comparisons of oral chloral hydrate against intravenous pentobarbital and music therapy was of very low to low quality, therefore the corresponding findings should be interpreted with caution.Further research should determine the effects of oral chloral hydrate on major clinical outcomes such as successful completion of procedures, requirements for additional sedative agent, and degree of sedation measured using validated scales, which were rarely assessed in the studies included in this review. The safety profile of chloral hydrate should be studied further, especially the risk of major adverse effects such as bradycardia, hypotension, and oxygen desaturation.

  11. Norhayati MN, Ho JJ, Azman MY
    Cochrane Database Syst Rev, 2017 Oct 17;10(10):CD010089.
    PMID: 29039160 DOI: 10.1002/14651858.CD010089.pub3
    BACKGROUND: Acute otitis media (AOM) is one of the most common infectious diseases in children. It has been reported that 64% of infants have an episode of AOM by the age of six months and 86% by one year. Although most cases of AOM are due to bacterial infection, it is commonly triggered by a viral infection. In most children AOM is self limiting, but it does carry a risk of complications. Since antibiotic treatment increases the risk of antibiotic resistance, influenza vaccines might be an effective way of reducing this risk by preventing the development of AOM.

    OBJECTIVES: To assess the effectiveness of influenza vaccine in reducing the occurrence of acute otitis media in infants and children.

    SEARCH METHODS: We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, CINAHL, LILACS, Web of Science, the WHO International Clinical Trials Registry Platform, and ClinicalTrials.gov (15 February 2017). We also searched the reference lists of included studies to identify any additional trials.

    SELECTION CRITERIA: Randomised controlled trials comparing influenza vaccine with placebo or no treatment in infants and children aged younger than six years. We included children of either sex and of any ethnicity, with or without a history of recurrent AOM.

    DATA COLLECTION AND ANALYSIS: Two review authors independently screened studies, assessed trial quality, and extracted data. We performed statistical analyses using the random-effects and fixed-effect models and expressed the results as risk ratio (RR), risk difference (RD), and number needed to treat for an additional beneficial outcome (NNTB) for dichotomous outcomes, with 95% confidence intervals (CI).

    MAIN RESULTS: We included 11 trials (6 trials in high-income countries and 5 multicentre trials in high-, middle-, and low-income countries) involving 17,123 children aged 6 months to 6 years. Eight trials recruited participants from a healthcare setting. Ten trials (and all four trials that contributed to the primary outcome) declared funding from vaccine manufacturers. Four trials reported adequate allocation concealment, and 10 trials reported adequate blinding of participants and personnel. Attrition was low for eight trials included in the analysis.The primary outcome showed a small reduction in at least one episode of AOM over at least six months of follow-up (4 trials, 3134 children; RR 0.84, 95% CI 0.69 to 1.02; RD -0.04, 95% CI -0.08 to -0.00; NNTB 25, 95% CI 12.5 to 100; low-quality evidence).The subgroup analyses (i.e. number of courses and types of vaccine administered) showed no differences.There was a reduction in the use of antibiotics in vaccinated children (2 trials, 1223 children; RR 0.70, 95% CI 0.59 to 0.83; RD -0.11, 95% CI -0.16 to -0.06; moderate-quality evidence).We were unable to demonstrate whether there was any difference in the utilisation of health care. The use of influenza vaccine resulted in a significant increase in fever (7 trials, 10,615 children; RR 1.15, 95% CI 1.06 to 1.24; RD 0.02, 95% CI 0.00 to 0.04; low-quality evidence), rhinorrhoea (6 trials, 10,563 children; RR 1.17, 95% CI 1.07 to 1.29; RD 0.09, 95% CI 0.01 to 0.16; low-quality evidence), but no difference in pharyngitis. No major adverse events were reported.Differing from the protocol, the original publication of the review included a subgroup analysis of AOM episodes by season, and the secondary outcome 'types of influenza vaccine' was changed to a subgroup analysis. For this update, we removed the subgroup analyses for trial setting, season, and utilisation of health care due to the small number of trials involved. We removed Belshe 2000 from primary and secondary outcomes (courses of vaccine and types of vaccine) because it reported episodes of AOM per person. We did not perform a subgroup analysis by type of adverse event. We have reported each type of adverse event as a separate analysis.

    AUTHORS' CONCLUSIONS: Influenza vaccine results in a small reduction in AOM. The observed reduction in the use of antibiotics needs to be considered in light of current recommended practices aimed at avoiding antibiotic overuse. Safety data from these trials were limited. The benefits may not justify the use of influenza vaccine without taking into account the vaccine efficacy in reducing influenza and safety data. We judged the quality of the evidence to be low to moderate. Additional research is needed.

  12. Chew BH, Vos RC, Metzendorf MI, Scholten RJ, Rutten GE
    Cochrane Database Syst Rev, 2017 Sep 27;9(9):CD011469.
    PMID: 28954185 DOI: 10.1002/14651858.CD011469.pub2
    BACKGROUND: Many adults with type 2 diabetes mellitus (T2DM) experience a psychosocial burden and mental health problems associated with the disease. Diabetes-related distress (DRD) has distinct effects on self-care behaviours and disease control. Improving DRD in adults with T2DM could enhance psychological well-being, health-related quality of life, self-care abilities and disease control, also reducing depressive symptoms.

    OBJECTIVES: To assess the effects of psychological interventions for diabetes-related distress in adults with T2DM.

    SEARCH METHODS: We searched the Cochrane Library, MEDLINE, Embase, PsycINFO, CINAHL, BASE, WHO ICTRP Search Portal and ClinicalTrials.gov. The date of the last search was December 2014 for BASE and 21 September 2016 for all other databases.

    SELECTION CRITERIA: We included randomised controlled trials (RCTs) on the effects of psychological interventions for DRD in adults (18 years and older) with T2DM. We included trials if they compared different psychological interventions or compared a psychological intervention with usual care. Primary outcomes were DRD, health-related quality of life (HRQoL) and adverse events. Secondary outcomes were self-efficacy, glycosylated haemoglobin A1c (HbA1c), blood pressure, diabetes-related complications, all-cause mortality and socioeconomic effects.

    DATA COLLECTION AND ANALYSIS: Two review authors independently identified publications for inclusion and extracted data. We classified interventions according to their focus on emotion, cognition or emotion-cognition. We performed random-effects meta-analyses to compute overall estimates.

    MAIN RESULTS: We identified 30 RCTs with 9177 participants. Sixteen trials were parallel two-arm RCTs, and seven were three-arm parallel trials. There were also seven cluster-randomised trials: two had four arms, and the remaining five had two arms. The median duration of the intervention was six months (range 1 week to 24 months), and the median follow-up period was 12 months (range 0 to 12 months). The trials included a wide spectrum of interventions and were both individual- and group-based.A meta-analysis of all psychological interventions combined versus usual care showed no firm effect on DRD (standardised mean difference (SMD) -0.07; 95% CI -0.16 to 0.03; P = 0.17; 3315 participants; 12 trials; low-quality evidence), HRQoL (SMD 0.01; 95% CI -0.09 to 0.11; P = 0.87; 1932 participants; 5 trials; low-quality evidence), all-cause mortality (11 per 1000 versus 11 per 1000; risk ratio (RR) 1.01; 95% CI 0.17 to 6.03; P = 0.99; 1376 participants; 3 trials; low-quality evidence) or adverse events (17 per 1000 versus 41 per 1000; RR 2.40; 95% CI 0.78 to 7.39; P = 0.13; 438 participants; 3 trials; low-quality evidence). We saw small beneficial effects on self-efficacy and HbA1c at medium-term follow-up (6 to 12 months): on self-efficacy the SMD was 0.15 (95% CI 0.00 to 0.30; P = 0.05; 2675 participants; 6 trials; low-quality evidence) in favour of psychological interventions; on HbA1c there was a mean difference (MD) of -0.14% (95% CI -0.27 to 0.00; P = 0.05; 3165 participants; 11 trials; low-quality evidence) in favour of psychological interventions. Our included trials did not report diabetes-related complications or socioeconomic effects.Many trials were small and were at high risk of bias for incomplete outcome data as well as possible performance and detection biases in the subjective questionnaire-based outcomes assessment, and some appeared to be at risk of selective reporting. There are four trials awaiting further classification. These are parallel RCTs with cognition-focused and emotion-cognition focused interventions. There are another 18 ongoing trials, likely focusing on emotion-cognition or cognition, assessing interventions such as diabetes self-management support, telephone-based cognitive behavioural therapy, stress management and a web application for problem solving in diabetes management. Most of these trials have a community setting and are based in the USA.

    AUTHORS' CONCLUSIONS: Low-quality evidence showed that none of the psychological interventions would improve DRD more than usual care. Low-quality evidence is available for improved self-efficacy and HbA1c after psychological interventions. This means that we are uncertain about the effects of psychological interventions on these outcomes. However, psychological interventions probably have no substantial adverse events compared to usual care. More high-quality research with emotion-focused programmes, in non-US and non-European settings and in low- and middle-income countries, is needed.

  13. Ngim CF, Lai NM, Hong JY, Tan SL, Ramadas A, Muthukumarasamy P, et al.
    Cochrane Database Syst Rev, 2017 09 18;9:CD012284.
    PMID: 28921500 DOI: 10.1002/14651858.CD012284.pub2
    BACKGROUND: Thalassaemia is a recessively-inherited blood disorder that leads to anaemia of varying severity. In those affected by the more severe forms, regular blood transfusions are required which may lead to iron overload. Accumulated iron from blood transfusions may be deposited in vital organs including the heart, liver and endocrine organs such as the pituitary glands which can affect growth hormone production. Growth hormone deficiency is one of the factors that can lead to short stature, a common complication in people with thalassaemia. Growth hormone replacement therapy has been used in children with thalassaemia who have short stature and growth hormone deficiency.

    OBJECTIVES: To assess the benefits and safety of growth hormone therapy in people with thalassaemia.

    SEARCH METHODS: We searched the Cochrane Haemoglobinopathies Trials Register, compiled from electronic database searches and handsearching of journals and conference abstract books. We also searched the reference lists of relevant articles, reviews and clinical trial registries. Our database and trial registry searches are current to 10 August 2017 and 08 August 2017, respectively.

    SELECTION CRITERIA: Randomised and quasi-randomised controlled trials comparing the use of growth hormone therapy to placebo or standard care in people with thalassaemia of any type or severity.

    DATA COLLECTION AND ANALYSIS: Two authors independently selected trials for inclusion. Data extraction and assessment of risk of bias were also conducted independently by two authors. The quality of the evidence was assessed using GRADE criteria.

    MAIN RESULTS: One parallel trial conducted in Turkey was included. The trial recruited 20 children with homozygous beta thalassaemia who had short stature; 10 children received growth hormone therapy administered subcutaneously on a daily basis at a dose of 0.7 IU/kg per week and 10 children received standard care. The overall risk of bias in this trial was low except for the selection criteria and attrition bias which were unclear. The quality of the evidence for all major outcomes was moderate, the main concern was imprecision of the estimates due to the small sample size leading to wide confidence intervals. Final height (cm) (the review's pre-specified primary outcome) and change in height were not assessed in the included trial. The trial reported no clear difference between groups in height standard deviation (SD) score after one year, mean difference (MD) -0.09 (95% confidence interval (CI) -0.33 to 0.15 (moderate quality evidence). However, modest improvements appeared to be observed in the following key outcomes in children receiving growth hormone therapy compared to control (moderate quality evidence): change between baseline and final visit in height SD score, MD 0.26 (95% CI 0.13 to 0.39); height velocity, MD 2.28 cm/year (95% CI 1.76 to 2.80); height velocity SD score, MD 3.31 (95% CI 2.43 to 4.19); and change in height velocity SD score between baseline and final visit, MD 3.41 (95% CI 2.45 to 4.37). No adverse effects of treatment were reported in either group; however, while there was no clear difference between groups in the oral glucose tolerance test at one year, fasting blood glucose was significantly higher in the growth hormone therapy group compared to control, although both results were still within the normal range, MD 6.67 mg/dL (95% CI 2.66 to 10.68). There were no data beyond the one-year trial period.

    AUTHORS' CONCLUSIONS: A small single trial contributed evidence of moderate quality that the use of growth hormone for a year may improve height velocity of children with thalassaemia although height SD score in the treatment group was similar to the control group. There are no randomised controlled trials in adults or trials that address the use of growth hormone therapy over a longer period and assess its effect on final height and quality of life. The optimal dosage of growth hormone and the ideal time to start this therapy remain uncertain. Large well-designed randomised controlled trials over a longer period with sufficient duration of follow up are needed.

  14. Karanth L, Kanagasabai S, Abas AB
    Cochrane Database Syst Rev, 2017 08 04;8:CD011059.
    PMID: 28776324 DOI: 10.1002/14651858.CD011059.pub3
    BACKGROUND: Bleeding disorders are uncommon but may pose significant bleeding complications during pregnancy, labour and following delivery for both the woman and the foetus. While many bleeding disorders in women tend to improve in pregnancy, thus decreasing the haemorrhagic risk to the mother at the time of delivery, some do not correct or return quite quickly to their pre-pregnancy levels in the postpartum period. Therefore, specific measures to prevent maternal bleeding and foetal complications during childbirth, are required. The safest method of delivery to reduce morbidity and mortality in these women is controversial. This is an update of a previously published review.

    OBJECTIVES: To assess the optimal mode of delivery in women with, or carriers of, bleeding disorders.

    SEARCH METHODS: We searched the Cochrane Cystic Fibrosis and Genetic Disorders Coagulopathies Trials Register, compiled from electronic database searches and handsearching of journals and conference abstract books. We also searched the Cochrane Pregnancy and Childbirth Group's Trials Register as well as trials registries and the reference lists of relevant articles and reviews.Date of last search of the Group's Trials Registers: 16 February 2017.

    SELECTION CRITERIA: Randomised controlled trials and all types of controlled clinical trials investigating the optimal mode of delivery in women with, or carriers of, any type of bleeding disorder during pregnancy were eligible for the review.

    DATA COLLECTION AND ANALYSIS: No trials matching the selection criteria were eligible for inclusion MAIN RESULTS: No results from randomised controlled trials were found.

    AUTHORS' CONCLUSIONS: The review did not identify any randomised controlled trials investigating the safest mode of delivery and associated maternal and foetal complications during delivery in women with, or carriers of, a bleeding disorder. In the absence of high quality evidence, clinicians need to use their clinical judgement and lower level evidence (e.g. from observational trials, case studies) to decide upon the optimal mode of delivery to ensure the safety of both mother and foetus.Given the ethical considerations, the rarity of the disorders and the low incidence of both maternal and foetal complications, future randomised controlled trials to find the optimal mode of delivery in this population are unlikely to be carried out. Other high quality controlled studies (such as risk allocation designs, sequential design, and parallel cohort design) are needed to investigate the risks and benefits of natural vaginal and caesarean section in this population or extrapolation from other clinical conditions that incur a haemorrhagic risk to the baby, such as platelet alloimmunisation.

  15. Lai NM, Ahmad Kamar A, Choo YM, Kong JY, Ngim CF
    Cochrane Database Syst Rev, 2017 Aug 01;8(8):CD011891.
    PMID: 28762235 DOI: 10.1002/14651858.CD011891.pub2
    BACKGROUND: Neonatal hyperbilirubinaemia is a common problem which carries a risk of neurotoxicity. Certain infants who have hyperbilirubinaemia develop bilirubin encephalopathy and kernicterus which may lead to long-term disability. Phototherapy is currently the mainstay of treatment for neonatal hyperbilirubinaemia. Among the adjunctive measures to compliment the effects of phototherapy, fluid supplementation has been proposed to reduce serum bilirubin levels. The mechanism of action proposed includes direct dilutional effects of intravenous (IV) fluids, or enhancement of peristalsis to reduce enterohepatic circulation by oral fluid supplementation.

    OBJECTIVES: To assess the risks and benefits of fluid supplementation compared to standard fluid management in term and preterm newborn infants with unconjugated hyperbilirubinaemia who require phototherapy.

    SEARCH METHODS: We used the standard search strategy of Cochrane Neonatal to search the Cochrane Central Register of Controlled Trials (CENTRAL; 2017, Issue 5), MEDLINE via PubMed (1966 to 7 June 2017), Embase (1980 to 7 June 2017), and CINAHL (1982 to 7 June 2017). We also searched clinical trials databases, conference proceedings, and the reference lists of retrieved articles for randomised controlled trials and quasi-randomised trials.

    SELECTION CRITERIA: We included randomised controlled trials that compared fluid supplementation against no fluid supplementation, or one form of fluid supplementation against another.

    DATA COLLECTION AND ANALYSIS: We extracted data using the standard methods of the Cochrane Neonatal Review Group using the Covidence platform. Two review authors independently assessed the eligibility and risk of bias of the retrieved records. We expressed our results using mean difference (MD), risk difference (RD), and risk ratio (RR) with 95% confidence intervals (CIs).

    MAIN RESULTS: Out of 1449 articles screened, seven studies were included. Three articles were awaiting classification, among them, two completed trials identified from the trial registry appeared to be unpublished so far.There were two major comparisons: IV fluid supplementation versus no fluid supplementation (six studies) and IV fluid supplementation versus oral fluid supplementation (one study). A total of 494 term, healthy newborn infants with unconjugated hyperbilirubinaemia were evaluated. All studies were at high risk of bias for blinding of care personnel, five studies had unclear risk of bias for blinding of outcome assessors, and most studies had unclear risk of bias in allocation concealment. There was low- to moderate-quality evidence for all major outcomes.In the comparison between IV fluid supplementation and no supplementation, no infant in either group developed bilirubin encephalopathy in the one study that reported this outcome. Serum bilirubin was lower at four hours postintervention for infants who received IV fluid supplementation (MD -34.00 μmol/L (-1.99 mg/dL), 95% CI -52.29 (3.06) to -15.71 (0.92); participants = 67, study = 1) (low quality of evidence, downgraded one level for indirectness and one level for suspected publication bias). Beyond eight hours postintervention, serum bilirubin was similar between the two groups. Duration of phototherapy was significantly shorter for fluid-supplemented infants, but the estimate was affected by heterogeneity which was not clearly explained (MD -10.70 hours, 95% CI -15.55 to -5.85; participants = 218; studies = 3; I² = 67%). Fluid-supplemented infants were less likely to require exchange transfusion (RR 0.39, 95% CI 0.21 to 0.71; RD -0.01, 95% CI -0.04 to 0.02; participants = 462; studies = 6; I² = 72%) (low quality of evidence, downgraded one level due to inconsistency, and another level due to suspected publication bias), and the estimate was similarly affected by unexplained heterogeneity. The frequencies of breastfeeding were similar between the fluid-supplemented and non-supplemented infants in days one to three based on one study (estimate on day three: MD 0.90 feeds, 95% CI -0.40 to 2.20; participants = 60) (moderate quality of evidence, downgraded one level for imprecision).One study contributed to all outcome data in the comparison of IV versus oral fluid supplementation. In this comparison, no infant in either group developed abnormal neurological signs. Serum bilirubin, as well as the rate of change of serum bilirubin, were similar between the two groups at four hours after phototherapy (serum bilirubin: MD 11.00 μmol/L (0.64 mg/dL), 95% CI -21.58 (-1.26) to 43.58 (2.55); rate of change of serum bilirubin: MD 0.80 μmol/L/hour (0.05 mg/dL/hour), 95% CI -2.55 (-0.15) to 4.15 (0.24); participants = 54 in both outcomes) (moderate quality of evidence for both outcomes, downgraded one level for indirectness). The number of infants who required exchange transfusion was similar between the two groups (RR 1.60, 95% CI 0.60 to 4.27; RD 0.11, 95% CI -0.12 to 0.34; participants = 54). No infant in either group developed adverse effects including vomiting or abdominal distension.

    AUTHORS' CONCLUSIONS: There is no evidence that IV fluid supplementation affects important clinical outcomes such as bilirubin encephalopathy, kernicterus, or cerebral palsy in healthy, term newborn infants with unconjugated hyperbilirubinaemia requiring phototherapy. In this review, no infant developed these bilirubin-associated clinical complications. Low- to moderate-quality evidence shows that there are differences in total serum bilirubin levels between fluid-supplemented and control groups at some time points but not at others, the clinical significance of which is uncertain. There is no evidence of a difference between the effectiveness of IV and oral fluid supplementations in reducing serum bilirubin. Similarly, no infant developed adverse events or complications from fluid supplementation such as vomiting or abdominal distension. This suggests a need for future research to focus on different population groups with possibly higher baseline risks of bilirubin-related neurological complications, such as preterm or low birthweight infants, infants with haemolytic hyperbilirubinaemia, as well as infants with dehydration for comparison of different fluid supplementation regimen.

  16. Ni H, Htet A, Moe S
    Cochrane Database Syst Rev, 2017 Jun 20;6:CD011897.
    PMID: 28631387 DOI: 10.1002/14651858.CD011897.pub2
    BACKGROUND: People with chronic obstructive pulmonary disease (COPD) have poor quality of life, reduced survival, and accelerated decline in lung function, especially associated with acute exacerbations, leading to high healthcare costs. Long-acting bronchodilators are the mainstay of treatment for symptomatic improvement, and umeclidinium is one of the new long-acting muscarinic antagonists approved for treatment of patients with stable COPD.

    OBJECTIVES: To assess the efficacy and safety of umeclidinium bromide versus placebo for people with stable COPD.

    SEARCH METHODS: We searched the Cochrane Airways Group Specialised Register (CAGR), ClinicalTrials.gov, the World Health Organization (WHO) trials portal, and the GlaxoSmithKline (GSK) Clinical Study Register, using prespecified terms, as well as the reference lists of all identified studies. Searches are current to April 2017.

    SELECTION CRITERIA: We included randomised controlled trials (RCTs) of parallel design comparing umeclidinium bromide versus placebo in people with COPD, for at least 12 weeks.

    DATA COLLECTION AND ANALYSIS: We used standard Cochrane methodological procedures. If we noted significant heterogeneity in the meta-analyses, we subgrouped studies by umeclidinium dose.

    MAIN RESULTS: We included four studies of 12 to 52 weeks' duration, involving 3798 participants with COPD. Mean age of participants ranged from 60.1 to 64.6 years; most were males with baseline mean smoking pack-years of 39.2 to 52.3. They had moderate to severe COPD and baseline mean post-bronchodilator forced expiratory volume in one second (FEV1) ranging from 44.5% to 55.1% of predicted normal. As all studies were systematically conducted according to prespecified protocols, we assessed risk of selection, performance, detection, attrition, and reporting biases as low.Compared with those given placebo, participants in the umeclidinium group had a lesser likelihood of developing moderate exacerbations requiring a short course of steroids, antibiotics, or both (odds ratio (OR) 0.61, 95% confidence interval (CI) 0.46 to 0.80; four studies, N = 1922; GRADE: high), but not specifically requiring hospitalisations due to severe exacerbations (OR 0.86, 95% CI 0.25 to 2.92; four studies, N = 1922, GRADE: low). The number needed to treat for an additional beneficial outcome (NNTB) to prevent an acute exacerbation requiring steroids, antibiotics, or both was 18 (95% CI 13 to 37). Quality of life was better in the umeclidinium group (mean difference (MD) -4.79, 95% CI -8.84 to -0.75; three studies, N = 1119), and these participants had a significantly higher chance of achieving a minimal clinically important difference of at least four units in St George's Respiratory Questionnaire (SGRQ) total score compared with those in the placebo group (OR 1.45, 95% CI 1.16 to 1.82; three studies, N = 1397; GRADE: moderate). The NNTB to achieve one person with a clinically meaningful improvement was 11 (95% CI 7 to 29). The likelihood of all-cause mortality, non-fatal serious adverse events (OR 1.33; 95% CI 0.89 to 2.00; four studies, N = 1922, GRADE: moderate), and adverse events (OR 1.06, 95% CI 0.85 to 1.31; four studies, N = 1922; GRADE: moderate) did not differ between umeclidinium and placebo groups. The umeclidinium group demonstrated significantly greater improvement in change from baseline in trough FEV1 compared with the placebo group (MD 0.14, 95% CI 0.12 to 0.17; four studies, N = 1381; GRADE: high). Symptomatic improvement was more likely in the umeclidinium group than in the placebo group, as determined by Transitional Dyspnoea Index (TDI) focal score (MD 0.76, 95% CI 0.43 to 1.09; three studies, N = 1193), and the chance of achieving a minimal clinically important difference of at least one unit improvement was significantly higher with umeclidinium than with placebo (OR 1.71, 95% CI 1.37 to 2.15; three studies, N = 1141; GRADE: high). The NNTB to attain one person with clinically important symptomatic improvement was 8 (95% CI 5 to 14). The likelihood of rescue medication usage (change from baseline in the number of puffs per day) was significantly less for the umeclidinium group than for the placebo group (MD -0.45, 95% CI -0.76 to -0.14; four studies, N = 1531).

    AUTHORS' CONCLUSIONS: Umeclidinium reduced acute exacerbations requiring steroids, antibiotics, or both, although no evidence suggests that it decreased the risk of hospital admission due to exacerbations. Moreover, umeclidinium demonstrated significant improvement in quality of life, lung function, and symptoms, along with lesser use of rescue medications. Studies reported no differences in adverse events, non-fatal serious adverse events, or mortality between umeclidinium and placebo groups; however, larger studies would yield a more precise estimate for these outcomes.

  17. Moy FM, Ray A, Buckley BS, West HM
    Cochrane Database Syst Rev, 2017 Jun 11;6(6):CD009613.
    PMID: 28602020 DOI: 10.1002/14651858.CD009613.pub3
    BACKGROUND: Self-monitoring of blood glucose (SMBG) is recommended as a key component of the management plan for diabetes therapy during pregnancy. No existing systematic reviews consider the benefits/effectiveness of various techniques of blood glucose monitoring on maternal and infant outcomes among pregnant women with pre-existing diabetes. The effectiveness of the various monitoring techniques is unclear.

    OBJECTIVES: To compare techniques of blood glucose monitoring and their impact on maternal and infant outcomes among pregnant women with pre-existing diabetes.

    SEARCH METHODS: We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (30 November 2016), searched reference lists of retrieved studies and contacted trial authors.

    SELECTION CRITERIA: Randomised controlled trials (RCTs) and quasi-RCTs comparing techniques of blood glucose monitoring including SMBG, continuous glucose monitoring (CGM) or clinic monitoring among pregnant women with pre-existing diabetes mellitus (type 1 or type 2). Trials investigating timing and frequency of monitoring were also included. RCTs using a cluster-randomised design were eligible for inclusion but none were identified.

    DATA COLLECTION AND ANALYSIS: Two review authors independently assessed study eligibility, extracted data and assessed the risk of bias of included studies. Data were checked for accuracy. The quality of the evidence was assessed using the GRADE approach.

    MAIN RESULTS: This review update includes at total of 10 trials (538) women (468 women with type 1 diabetes and 70 women with type 2 diabetes). The trials took place in Europe and the USA. Five of the 10 included studies were at moderate risk of bias, four studies were at low to moderate risk of bias, and one study was at high risk of bias. The trials are too small to show differences in important outcomes such as macrosomia, preterm birth, miscarriage or death of baby. Almost all the reported GRADE outcomes were assessed as being very low-quality evidence. This was due to design limitations in the studies, wide confidence intervals, small sample sizes, and few events. In addition, there was high heterogeneity for some outcomes.Various methods of glucose monitoring were compared in the trials. Neither pooled analyses nor individual trial analyses showed any clear advantages of one monitoring technique over another for primary and secondary outcomes. Many important outcomes were not reported.1. Self-monitoring versus standard care (two studies, 43 women): there was no clear difference for caesarean section (risk ratio (RR) 0.78, 95% confidence interval (CI) 0.40 to 1.49; one study, 28 women) or glycaemic control (both very low-quality), and not enough evidence to assess perinatal mortality and neonatal mortality and morbidity composite. Hypertensive disorders of pregnancy, large-for-gestational age, neurosensory disability, and preterm birth were not reported in either study.2. Self-monitoring versus hospitalisation (one study, 100 women): there was no clear difference for hypertensive disorders of pregnancy (pre-eclampsia and hypertension) (RR 4.26, 95% CI 0.52 to 35.16; very low-quality: RR 0.43, 95% CI 0.08 to 2.22; very low-quality). There was no clear difference in caesarean section or preterm birth less than 37 weeks' gestation (both very low quality), and the sample size was too small to assess perinatal mortality (very low-quality). Large-for-gestational age, mortality or morbidity composite, neurosensory disability and preterm birth less than 34 weeks were not reported.3. Pre-prandial versus post-prandial glucose monitoring (one study, 61 women): there was no clear difference between groups for caesarean section (RR 1.45, 95% CI 0.92 to 2.28; very low-quality), large-for-gestational age (RR 1.16, 95% CI 0.73 to 1.85; very low-quality) or glycaemic control (very low-quality). The results for hypertensive disorders of pregnancy: pre-eclampsia and perinatal mortality are not meaningful because these outcomes were too rare to show differences in a small sample (all very low-quality). The study did not report the outcomes mortality or morbidity composite, neurosensory disability or preterm birth.4. Automated telemedicine monitoring versus conventional system (three studies, 84 women): there was no clear difference for caesarean section (RR 0.96, 95% CI 0.62 to 1.48; one study, 32 women; very low-quality), and mortality or morbidity composite in the one study that reported these outcomes. There were no clear differences for glycaemic control (very low-quality). No studies reported hypertensive disorders of pregnancy, large-for-gestational age, perinatal mortality (stillbirth and neonatal mortality), neurosensory disability or preterm birth.5.CGM versus intermittent monitoring (two studies, 225 women): there was no clear difference for pre-eclampsia (RR 1.37, 95% CI 0.52 to 3.59; low-quality), caesarean section (average RR 1.00, 95% CI 0.65 to 1.54; I² = 62%; very low-quality) and large-for-gestational age (average RR 0.89, 95% CI 0.41 to 1.92; I² = 82%; very low-quality). Glycaemic control indicated by mean maternal HbA1c was lower for women in the continuous monitoring group (mean difference (MD) -0.60 %, 95% CI -0.91 to -0.29; one study, 71 women; moderate-quality). There was not enough evidence to assess perinatal mortality and there were no clear differences for preterm birth less than 37 weeks' gestation (low-quality). Mortality or morbidity composite, neurosensory disability and preterm birth less than 34 weeks were not reported.6. Constant CGM versus intermittent CGM (one study, 25 women): there was no clear difference between groups for caesarean section (RR 0.77, 95% CI 0.33 to 1.79; very low-quality), glycaemic control (mean blood glucose in the 3rd trimester) (MD -0.14 mmol/L, 95% CI -2.00 to 1.72; very low-quality) or preterm birth less than 37 weeks' gestation (RR 1.08, 95% CI 0.08 to 15.46; very low-quality). Other primary (hypertensive disorders of pregnancy, large-for-gestational age, perinatal mortality (stillbirth and neonatal mortality), mortality or morbidity composite, and neurosensory disability) or GRADE outcomes (preterm birth less than 34 weeks' gestation) were not reported.

    AUTHORS' CONCLUSIONS: This review found no evidence that any glucose monitoring technique is superior to any other technique among pregnant women with pre-existing type 1 or type 2 diabetes. The evidence base for the effectiveness of monitoring techniques is weak and additional evidence from large well-designed randomised trials is required to inform choices of glucose monitoring techniques.

  18. Kokavec J, Wu Z, Sherwin JC, Ang AJ, Ang GS
    Cochrane Database Syst Rev, 2017 Jun 01;6:CD011676.
    PMID: 28570745 DOI: 10.1002/14651858.CD011676.pub2
    BACKGROUND: The vitreous is the clear jelly of the eye and contains fine strands of proteins. Throughout life the composition of this vitreous changes, which causes the protein strands in it to bundle together and scatter light before it reaches the retina. Individuals perceive the shadows cast by these protein bundles as 'floaters'. Some people are so bothered by floaters that treatment is required to control their symptoms. Two major interventions for floaters include Nd:YAG laser vitreolysis and vitrectomy. Nd:YAG laser vitreolysis involves using laser energy to fragment the vitreous opacities via a non-invasive approach. Vitrectomy involves the surgical replacement of the patient's vitreous (including the symptomatic vitreous floaters) with an inert and translucent balanced salt solution, through small openings in the pars plana.

    OBJECTIVES: To compare the effectiveness and safety of Nd:YAG laser vitreolysis to pars plana vitrectomy for symptomatic vitreous floaters.

    SEARCH METHODS: We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (which contains the Cochrane Eyes and Vision Trials Register) (2016, Issue 12), MEDLINE Ovid (1946 to 17 January 2017), Embase Ovid (1947 to 17 January 2017), LILACS (Latin American and Caribbean Health Sciences Literature Database) (1982 to 17 January 2017), the ISRCTN registry (www.isrctn.com/editAdvancedSearch); searched 17 January 2017, ClinicalTrials.gov (www.clinicaltrials.gov); searched 17 January 2017 and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en); searched 17 January 2017. We did not use any date or language restrictions in the electronic searches for trials. We also searched conference proceedings to identify additional studies.

    SELECTION CRITERIA: We included only randomised controlled trials (RCTs) that compared Nd:YAG laser vitreolysis to pars plana vitrectomy for treatment of symptomatic floaters.

    DATA COLLECTION AND ANALYSIS: We planned to use methods recommended by Cochrane. The primary outcome we planned to measure was change in vision-related quality of life from baseline to 12 months, as determined by a vision-related quality of life questionnaire. The secondary outcomes we planned to measure were best corrected logMAR or Snellen visual acuity at 12 months for the treated eye(s) and costs. Adverse outcomes we planned to record were the occurrence of sight-threatening complications by 12 months (asymptomatic retinal tears, symptomatic retinal tears, retinal detachment, cataract formation, and endophthalmitis).

    MAIN RESULTS: No studies met the inclusion criteria of this review.

    AUTHORS' CONCLUSIONS: There are currently no RCTs that compare Nd:YAG laser vitreolysis with pars plana vitrectomy for the treatment of symptomatic floaters. Properly designed RCTs are needed to evaluate the treatment outcomes from the interventions described. We recommend future studies randomise participants to either a Nd:YAG laser vitreolysis group or a vitrectomy group, with participants in each group assigned to either receive treatment or a sham intervention. Future studies should follow participants at six months and 12 months after the intervention. Also they should use best corrected visual acuity (BCVA) using an Early Treatment of Diabetic Retinopathy Study (ETDRS) chart read at 4 metres, vision-related quality of life (VRQOL), and adverse outcomes as the outcome measures of the trial.

  19. Adler AJ, Martin N, Mariani J, Tajer CD, Owolabi OO, Free C, et al.
    Cochrane Database Syst Rev, 2017 Apr 29;4(4):CD011851.
    PMID: 28455948 DOI: 10.1002/14651858.CD011851.pub2
    BACKGROUND: Worldwide at least 100 million people are thought to have prevalent cardiovascular disease (CVD). This population has a five times greater chance of suffering a recurrent cardiovascular event than people without known CVD. Secondary CVD prevention is defined as action aimed to reduce the probability of recurrence of such events. Drug interventions have been shown to be cost-effective in reducing this risk and are recommended in international guidelines. However, adherence to recommended treatments remains sub-optimal. In order to influence non-adherence, there is a need to develop scalable and cost-effective behaviour-change interventions.

    OBJECTIVES: To assess the effects of mobile phone text messaging in patients with established arterial occlusive events on adherence to treatment, fatal and non-fatal cardiovascular events, and adverse effects.

    SEARCH METHODS: We searched CENTRAL, MEDLINE, Embase, the Conference Proceedings Citation Index - Science on Web of Science on 7 November 2016, and two clinical trial registers on 12 November 2016. We contacted authors of included studies for missing information and searched reference lists of relevant papers. We applied no language or date restrictions.

    SELECTION CRITERIA: We included randomised trials with at least 50% of the participants with established arterial occlusive events. We included trials investigating interventions using short message service (SMS) or multimedia messaging service (MMS) with the aim to improve adherence to medication for the secondary prevention of cardiovascular events. Eligible comparators were no intervention or other modes of communication.

    DATA COLLECTION AND ANALYSIS: We used standard methodological procedures expected by Cochrane. In addition, we attempted to contact all authors on how the SMS were developed.

    MAIN RESULTS: We included seven trials (reported in 13 reports) with 1310 participants randomised. Follow-up ranged from one month to 12 months. Due to heterogeneity in the methods, population and outcome measures, we were unable to conduct meta-analysis on these studies. All seven studies reported on adherence, but using different methods and scales. Six out of seven trials showed a beneficial effect of mobile phone text messaging for medication adherence. Dale 2015a, reported significantly greater medication adherence score in the intervention group (Mean Difference (MD) 0.58, 95% confidence interval (CI) 0.19 to 0.97; 123 participants randomised) at six months. Khonsari 2015 reported less adherence in the control group (Relative Risk (RR) 4.09, 95% CI 1.82 to 9.18; 62 participants randomised) at eight weeks. Pandey 2014 (34 participants randomised) assessed medication adherence through self-reported logs with 90% adherence in the intervention group compared to 70% in the control group at 12 months. Park 2014a (90 participants randomised) reported a greater increase of the medication adherence score in the control group, but also measured adherence with an event monitoring system for a number of medications with adherence levels ranging from 84.1% adherence to 86.2% in the intervention group and 79.7% to 85.7% in the control group at 30 days. Quilici 2013, reported reduced odds of non-adherence in the intervention group (Odds Ratio (OR) 0.43, 95% CI 0.22 to 0.86, 521 participants randomised) at 30 days. Fang 2016, reported that participants given SMS alone had reduced odds of being non-adherent compared to telephone reminders (OR 0.40 95% CI 0.18 to 0.63; 280 patients randomised). Kamal 2015 reported higher levels of adherence in the intervention arm (adjusted MD 0.54, 95% CI 0.22 to 0.85; 200 participants randomised). Khonsari 2015 was the only study to report fatal cardiovascular events and only reported two events, both in the control arm. No study reported on the other primary outcomes. No study reported repetitive thumb injury or road traffic crashes or other adverse events that were related to the intervention.Four authors replied to our questionnaire on SMS development. No study reported examining causes of non-adherence or provided SMS tailored to individual patient characteristics.The included studies were small, heterogeneous and included participants recruited directly after acute events. All studies were assessed as having high risk of bias across at least one domain. Most of the studies came from high-income countries, with two studies conducted in an upper middle-income country (China, Malaysia), and one study from a lower middle-income country (Pakistan). The quality of the evidence was found to be very low. There was no obvious conflicts of interest from authors, although only two declared their funding.

    AUTHORS' CONCLUSIONS: While the results of this systematic review are promising, there is insufficient evidence to draw conclusions on the effectiveness of text message-based interventions for adherence to medications for secondary prevention of CVD. Sufficiently powered, high-quality randomised trials are needed, particularly in low- and middle-income countries.

  20. Than NN, Soe HHK, Palaniappan SK, Abas AB, De Franceschi L
    Cochrane Database Syst Rev, 2017 Apr 14;4:CD011358.
    PMID: 28409830 DOI: 10.1002/14651858.CD011358.pub2
    BACKGROUND: Sickle cell disease is an autosomal recessive inherited haemoglobinopathy which causes painful vaso-occlusive crises due to sickle red blood cell dehydration. Vaso-occlusive crises are common painful events responsible for a variety of clinical complications; overall mortality is increased and life expectancy decreased compared to the general population. Experimental studies suggest that intravenous magnesium has proven to be well-tolerated in individuals hospitalised for the immediate relief of acute (sudden onset) painful crisis and has the potential to decrease the length of hospital stay. Some in vitro studies and open studies of long-term oral magnesium showed promising effect on pain relief but failed to show its efficacy. The studies show that oral magnesium therapy may prevent sickle red blood cell dehydration and prevent recurrent painful episodes. There is a need to access evidence for the impact of oral and intravenous magnesium effect on frequency of pain, length of hospital stay and quality of life.

    OBJECTIVES: To evaluate the effects of short-term intravenous magnesium on the length of hospital stay and quality of life in children and adults with sickle cell disease. To determine the effects of long-term oral magnesium therapy on the frequency of painful crises and the quality of life in children and adults with sickle cell disease.

    SEARCH METHODS: We searched the Cochrane Haemoglobinopathies Trials Register, compiled from electronic database searches and handsearching of journals and conference abstract books.Date of last search of the Cochrane Cystic Fibrosis and Genetic Disorders Group's Haemoglobinopathies Trials Register: 01 December 2016.Date of last search of other resources (clinical trials registries): 29 March 2017.

    SELECTION CRITERIA: We searched for published and unpublished randomized controlled studies of oral or intravenous magnesium compared to placebo or no magnesium.

    DATA COLLECTION AND ANALYSIS: Authors independently assessed the study quality and extracted the data using standard Cochrane methodologies.

    MAIN RESULTS: We included five randomized placebo-controlled studies with a total of 386 participants (aged three to 53 years). Two shorter parallel studies (n = 306) compared intravenous magnesium sulphate to placebo (normal saline) for admission to hospital due to a vaso-occlusive crisis, for which we were able to analyse data. The quality of evidence was moderate for studies presenting this comparison mainly due to limitations due to risk of bias and imprecision. Two of the three longer-term studies comparing oral magnesium pidolate to placebo had a cross-over design. The third was a parallel factorial study which compared hydroxyurea and oral magnesium to each other and to placebo over a longer period of time; we only present the comparison of oral magnesium to placebo from this study. The quality of evidence was very low with uncertainty of the estimation.The eight-hourly dose levels in the two studies of intravenous magnesium were different; one used 100 mg/kg while the second used 40 mg/kg. Only one of these studies (n = 104) reported the mean daily pain score while hospitalised (a non-significant difference between groups, moderate quality evidence). The second study (n = 202) reported a number of child- and parent-reported quality of life scores. None of the scores showed any difference between treatment groups (low quality evidence). Data from one study (n = 106) showed no difference in length of stay in hospital between groups (low quality evidence). Both studies reported on adverse events, but not defined by severity as we had planned. One study showed significantly more participants receiving intravenous magnesium experienced warmth at infusion site compared to placebo; there were no differences between groups for other adverse events (low quality evidence).Three studies (n = 80) compared oral magnesium pidolate to placebo. None of them reported data which we were able to analyse. One study (n = 24) reported on the number of painful days and stated there was no difference between two groups (low quality evidence). None of the studies reported on quality of life or length of hospital stay. Two studies (n = 68) reported there were no differences in levels of magnesium in either plasma or red blood cells (moderate quality evidence). Two studies (n = 56) reported adverse events. One reported episodes of mild diarrhoea and headache, all of which resolved without stopping treatment. The second study reported adverse events as gastrointestinal disorders, headache or migraine, upper respiratory infections and rash; which were all evenly distributed across treatment groups (moderate quality evidence).

    AUTHORS' CONCLUSIONS: Moderate to low quality evidence showed neither intravenous magnesium and oral magnesium therapy has an effect on reducing painful crisis, length of hospital stay and changing quality of life in treating sickle cell disease. Therefore, no definitive conclusions can be made regarding its clinical benefit. Further randomized controlled studies, perhaps multicentre, are necessary to establish whether intravenous and oral magnesium therapies have any effect on improving the health of people with sickle cell disease.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links