OBJECTIVES: In spontaneously breathing preterm infants with RDS, to determine if continuous distending pressure (CDP) reduces the need for IPPV and associated morbidity without adverse effects.
SEARCH STRATEGY: The standard search strategy of the Neonatal Review group was used. This included searches of the Oxford Database of Perinatal Trials, Cochrane Controlled Trials Register (The Cochrane Library, Issue 1, 2002), MEDLINE (1966-January 2002), and EMBASE (1980-January 2002), previous reviews including cross references, abstracts, conference and symposia proceedings, expert informants, journal hand searching mainly in the English language.
SELECTION CRITERIA: All trials using random or quasi-random allocation of preterm infants with RDS were eligible. Interventions were continuous distending pressure including continuous positive airway pressure (CPAP) by mask, nasal prong, nasopharyngeal tube, or endotracheal tube, or continuous negative pressure (CNP) via a chamber enclosing the thorax and lower body, compared with standard care.
DATA COLLECTION AND ANALYSIS: Standard methods of the Cochrane Collaboration and its Neonatal Review Group were used, including independent assessment of trial quality and extraction of data by each author.
MAIN RESULTS: CDP is associated with a lower rate of failed treatment (death or use of assisted ventilation) [summary RR 0.70 (0.55, 0.88), RD -0.22 (-0.35, -0.09), NNT 5 (3, 11)], overall mortality [summary RR 0.52 (0.32, 0.87), RD -0.15 (-0.26, -0.04), NNT 7 (4, 25)], and mortality in infants with birthweights above 1500 g [summary RR 0.24 (0.07, 0.84), RD -0.281 (-0.483, -0.078), NNT 4 (2, 13)]. The use of CDP is associated with an increased rate of pneumothorax [summary RR 2.36 (1.25, 5.54), RD 0.14 (0.04, 0.23), NNH 7 (4, 24)].
REVIEWER'S CONCLUSIONS: In preterm infants with RDS the application of CDP either as CPAP or CNP is associated with benefits in terms of reduced respiratory failure and reduced mortality. CDP is associated with an increased rate of pneumothorax. The applicability of these results to current practice is difficult to assess, given the intensive care setting of the 1970s when four out of five of these trials were done. Where resources are limited, such as in developing countries, CPAP for RDS may have a clinical role. Further research is required to determine the best mode of administration and its role in modern intensive care settings
OBJECTIVES: In spontaneously breathing preterm infants with RDS, to determine if continuous distending pressure (CDP) reduces the need for IPPV and associated morbidity without adverse effects.
SEARCH STRATEGY: The standard search strategy of the Neonatal Review group was used. This included searches of the Oxford Database of Perinatal Trials, Cochrane Controlled Trials Register, MEDLINE (1966-Jan. 2000), previous reviews including cross references, abstracts, conference and symposia proceedings, expert informants, journal hand searching mainly in the English language.
SELECTION CRITERIA: All trials using random or quasi-random patient allocation of newborn infants with RDS were eligible. Interventions were continuous distending pressure including continuous positive airway pressure (CPAP) by mask, nasal prong, nasopharyngeal tube, or endotracheal tube, or continuous negative pressure (CNP) via a chamber enclosing the thorax and lower body, compared with standard care.
DATA COLLECTION AND ANALYSIS: Standard methods of the Cochrane Collaboration and its Neonatal Review Group, including independent assessment of trial quality and extraction of data by each author, were used.
MAIN RESULTS: CDP is associated with a lower rate of failed treatment (death or use of assisted ventilation), overall mortality, and mortality in infants with birthweights above 1500 g. The use of CDP is associated with an increased rate of pneumothorax.
REVIEWER'S CONCLUSIONS: In preterm infants with RDS the application of CDP either as CPAP or CNP is associated with some benefits in terms of reduced respiratory failure and reduced mortality. CDP is associated with an increased rate of pneumothorax. The applicability of these results to current practice is difficult to assess, given the outdated methods to administer CDP, low use of antenatal corticosteroids, non-availability of surfactant and the intensive care setting of the 1970s when these trials were done. Where resources are limited, such as in developing countries, CPAP for RDS may have a clinical role. Further research is required to determine the best mode of administration and its role in modern intensive care settings
OBJECTIVES: To determine whether nasal continuous positive airway pressure (NCPAP), applied immediately after extubation of preterm infants, reduces the incidence of extubation failure and the need for additional ventilatory support, without clinically important adverse events.
SEARCH METHODS: We searched CENTRAL, MEDLINE, Embase, and trial registries on 22 September 2023 using a revised strategy. We searched conference abstracts and the reference lists of included studies and relevant systematic reviews.
SELECTION CRITERIA: Eligible trials employed random or quasi-random allocation of preterm infants undergoing extubation. Eligible comparisons were NCPAP (delivered by any device and interface) versus head box oxygen, extubation to room air, or any other form of low-pressure supplemental oxygen. We grouped the comparators under the term no continuous positive airway pressure (no CPAP).
DATA COLLECTION AND ANALYSIS: Two review authors independently assessed the risk of bias and extracted data from the included studies. Where studies were sufficiently similar, we performed a meta-analysis, calculating risk ratios (RRs) with their 95% confidence intervals (CIs) for dichotomous data. For the primary outcomes that showed an effect, we calculated the number needed to treat for an additional beneficial outcome (NNTB). We used the GRADE approach to assess the certainty of the evidence for clinically important outcomes.
MAIN RESULTS: We included nine trials (with 726 infants) in the quantitative synthesis of this updated review. Eight studies were conducted in high-income countries between 1982 and 2005. One study was conducted in Chile, which was classified as upper-middle income at the time of the study. All studies used head box oxygen in the control arm. Risk of bias was generally low. However, due to the inherent nature of the intervention, no studies incorporated blinding. Consequently, the neonatal intensive care unit staff were aware of the assigned group for each infant, and we judged all studies at high risk of performance bias. However, we assessed blinding of the outcome assessor (detection bias) as low risk for seven studies because they used objective criteria to define both primary outcomes. NCPAP compared with no CPAP may reduce the risk of extubation failure (RR 0.62, 95% CI 0.51 to 0.76; risk difference (RD) -0.17, 95% -0.23 to -0.10; NNTB 6, 95% CI 4 to 10; I2 = 55%; 9 studies, 726 infants; low-certainty evidence) and endotracheal reintubation (RR 0.79, 95% 0.64 to 0.98; RD -0.07, 95% CI -0.14 to -0.01; NNTB 15, 95% CI 8 to 100; I2 = 65%; 9 studies; 726 infants; very low-certainty evidence), though the evidence for endotracheal reintubation is very uncertain. NCPAP compared with no CPAP may have little or no effect on bronchopulmonary dysplasia, but the evidence is very uncertain (RR 0.89, 95% CI 0.47 to 1.68; RD -0.03, 95% CI -0.22 to 0.15; 1 study, 92 infants; very low-certainty evidence). No study reported neurodevelopmental outcomes.
AUTHORS' CONCLUSIONS: NCPAP may be more effective than no CPAP in preventing extubation failure in preterm infants if applied immediately after extubation from invasive mechanical ventilation. We are uncertain whether it can reduce the risk of reintubation or bronchopulmonary dysplasia. We have no information on long-term neurodevelopmental outcomes. Although there is only low-certainty evidence for the effectiveness of NCPAP immediately after extubation in preterm infants, we consider there is no need for further research on this intervention, which has become standard practice.
CONCLUSION: Exposing preterm infants to either 12 h cyglical lighting or continuously dim environment did not have any significant effect on their weight gain during the neonatal period.
OBJECTIVES: • To determine if early compared with delayed initiation of CPAP results in lower mortality and reduced need for intermittent positive-pressure ventilation in preterm infants in respiratory distress ○ Subgroup analyses were planned a priori on the basis of weight (with subdivisions at 1000 grams and 1500 grams), gestation (with subdivisions at 28 and 32 weeks), and according to whether surfactant was used ▫ Sensitivity analyses based on trial quality were also planned ○ For this update, we have excluded trials using continuous negative pressure SEARCH METHODS: We used the standard search strategy of Cochrane Neonatal to search the Cochrane Central Register of Controlled Trials (CENTRAL; 2020, Issue 6), in the Cochrane Library; Ovid MEDLINE(R) and Epub Ahead of Print, In-Process & Other Non-Indexed Citations Daily and Versions(R); and the Cumulative Index to Nursing and Allied Health Literatue (CINAHL), on 30 June 2020. We also searched clinical trials databases and the reference lists of retrieved articles for randomised controlled trials (RCTs) and quasi-RCTs.
SELECTION CRITERIA: We included trials that used random or quasi-random allocation to either early or delayed CPAP for spontaneously breathing preterm infants in respiratory distress.
DATA COLLECTION AND ANALYSIS: We used the standard methods of Cochrane and Cochrane Neonatal, including independent assessment of trial quality and extraction of data by two review authors. We used the GRADE approach to assess the certainty of evidence.
MAIN RESULTS: We found four studies that recruited a total of 119 infants. Two were quasi-randomised, and the other two did not provide details on the method of randomisation or allocation used. None of these studies used blinding of the intervention or the outcome assessor. Evidence showed uncertainty about whether early CPAP has an effect on subsequent use of intermittent positive-pressure ventilation (IPPV) (typical risk ratio (RR) 0.77, 95% confidence interval (CI) 0.43 to 1.38; typical risk difference (RD) -0.08, 95% CI -0.23 to 0.08; I² = 0%, 4 studies, 119 infants; very low-certainty evidence) or mortality (typical RR 0.93, 95% CI 0.43 to 2.03; typical RD -0.02, 95% CI -0.15 to 0.12; I² = 33%, 4 studies, 119 infants; very low-certainty evidence). The outcome 'failed treatment' was not reported in any of these studies. There was an uncertain effect on air leak (pneumothorax) (typical RR 1.09, 95% CI 0.39 to 3.04, I² = 0%, 3 studies, 98 infants; very low-certainty evidence). No trials reported intraventricular haemorrhage or necrotising enterocolitis. No cases of retinopathy of prematurity were reported in one study (21 infants). One case of bronchopulmonary dysplasia was reported in each group in one study involving 29 infants. Long-term outcomes were not reported.
AUTHORS' CONCLUSIONS: All four small trials included in this review were performed in the 1970s or the early 1980s, and we are very uncertain whether early application of CPAP confers clinical benefit in the treatment of respiratory distress, or whether it is associated with any adverse effects. Further trials should be directed towards establishing the appropriate level of CPAP and the timing and method of administration of surfactant when used along with CPAP.
OBJECTIVES: This study aimed to determine EnCPAP rates in 36 neonatal intensive care units of the Malaysian National Neonatal Registry (MNNR) in 2013, to compare the outcomes of VLBW neonates with and without EnCPAP, and to determine whether the availability of CPAP facilities and unit policies played a significant role in EnCPAP rates.
METHODS: First, a retrospective cohort study was conducted of VLBW neonates born in the hospitals participating in the study without major congenital abnormalities in the MNNR. This was followed by a questionnaire survey of these hospitals focussed on CPAP facilities and unit policies.
RESULTS: Of the 2,823 neonates, 963 (34.1%) received EnCPAP. Amongst EnCPAP neonates significantly fewer deaths were recorded (10.9 vs. 21.7%; p < 0.001), less bronchopulmonary dysplasia was observed (BPD; 8.0 vs. 11.7%; p = 0.002) and fewer mechanical ventilation days were necessary (p < 0.001) than in non-EnCPAP neonates. Logistic regression analysis showed that EnCPAP was significantly associated with a lower mortality (adjusted OR 0.623; 95% CI 0.472, 0.824; p = 0.001) and BPD among survivors (adjusted OR 0.585; 95% CI 0.427, 0.802; p = 0.001). The median EnCPAP rate of the 36 hospitals was 28.4% (IQR 14.3-38.7). Hospitals with CPAP facilities in the delivery suites (p = 0.001) and during transport (p = 0.001) and a policy for EnCPAP (p = 0.036) had significantly higher EnCPAP rates.
CONCLUSION: EnCPAP reduced mortality and BPD in Malaysian VLBW neonates. Resource-strapped developing countries should prioritise the use of this low-cost therapy.
METHODOLOGY: Tracheal aspirates were obtained from neonates on ventilatory support. The SM test was carried out on specimens of tracheal aspirate immediately after collection. Levels of SP-A in tracheal aspirates were determined by enzyme-linked immunosorbent assay (ELISA) method. The results of the SM test and SP-A level of the tracheal aspirates were compared against the clinical diagnosis of RDS based on clinical, radiological and bacteriological findings.
RESULTS: Both the median microbubble counts (6 microbubbles/mm2, range = 0-90) and median SP-A levels (100 micrograms/L, range = 0-67447) of infants with RDS were significantly lower than those of infants with no obvious lung pathology (P < 0.0001), and pneumonia (P < 0.0001). The SM test of tracheal aspirates had higher overall accuracy for the diagnosis of RDS than measurement of SP-A levels (94.6% vs 82.4%). When the receiver operating characteristic (ROC) curves of both tests for RDS were compared, the area under the ROC curve of the SM test was larger (0.9689) than that of the SP-A method (0.8965).
CONCLUSIONS: This study showed that the SM test of tracheal aspirate was a useful bedside diagnostic test for RDS. It could be carried out at any time after birth on infants requiring ventilatory support.
OBJECTIVES: To determine the effect of continuous distending pressure (CDP) on the need for IPPV and associated morbidity in spontaneously breathing preterm infants with respiratory distress.Subgroup analyses were planned on the basis of birth weight (> or < 1000 or 1500 g), gestational age (groups divided at about 28 weeks and 32 weeks), methods of application of CDP (i.e. CPAP and CNP), application early versus late in the course of respiratory distress and high versus low pressure CDP and application of CDP in tertiary compared with non-tertiary hospitals, with the need for sensitivity analysis determined by trial quality.At the 2008 update, the objectives were modified to include preterm infants with respiratory failure.
SEARCH METHODS: We used the standard search strategy of the Neonatal Review Group. This included searches of the Oxford Database of Perinatal Trials, the Cochrane Central Register of Controlled Trials (CENTRAL, 2015 Issue 4), MEDLINE (1966 to 30 April 2015) and EMBASE (1980 to 30 April 2015) with no language restriction, as well as controlled-trials.com, clinicaltrials.gov and the International Clinical Trials Registry Platform of the World Health Organization (WHO).
SELECTION CRITERIA: All random or quasi-random trials of preterm infants with respiratory distress were eligible. Interventions were continuous distending pressure including continuous positive airway pressure (CPAP) by mask, nasal prong, nasopharyngeal tube or endotracheal tube, or continuous negative pressure (CNP) via a chamber enclosing the thorax and the lower body, compared with spontaneous breathing with oxygen added as necessary.
DATA COLLECTION AND ANALYSIS: We used standard methods of The Cochrane Collaboration and its Neonatal Review Group, including independent assessment of trial quality and extraction of data by each review author.
MAIN RESULTS: We included six studies involving 355 infants - two using face mask CPAP, two CNP, one nasal CPAP and one both CNP (for less ill babies) and endotracheal CPAP (for sicker babies). For this update, we included no new trials.Continuous distending pressure (CDP) is associated with lower risk of treatment failure (death or use of assisted ventilation) (typical risk ratio (RR) 0.65, 95% confidence interval (CI) 0.52 to 0.81; typical risk difference (RD) -0.20, 95% CI -0.29 to -0.10; number needed to treat for an additional beneficial outcome (NNTB) 5, 95% CI 4 to 10; six studies; 355 infants), lower overall mortality (typical RR 0.52, 95% CI 0.32 to 0.87; typical RD -0.15, 95% CI -0.26 to -0.04; NNTB 7, 95% CI 4 to 25; six studies; 355 infants) and lower mortality in infants with birth weight above 1500 g (typical RR 0.24, 95% CI 0.07 to 0.84; typical RD -0.28, 95% CI -0.48 to -0.08; NNTB 4, 95% CI 2.00 to 13.00; two studies; 60 infants). Use of CDP is associated with increased risk of pneumothorax (typical RR 2.64, 95% CI 1.39 to 5.04; typical RD 0.10, 95% CI 0.04 to 0.17; number needed to treat for an additional harmful outcome (NNTH) 17, 95% CI 17.00 to 25.00; six studies; 355 infants). We found no difference in bronchopulmonary dysplasia (BPD), defined as oxygen dependency at 28 days (three studies, 260 infants), as well as no difference in outcome at nine to 14 years (one study, 37 infants).
AUTHORS' CONCLUSIONS: In preterm infants with respiratory distress, the application of CDP as CPAP or CNP is associated with reduced respiratory failure and mortality and an increased rate of pneumothorax. Four out of six of these trials were done in the 1970s. Therefore, the applicability of these results to current practice is difficult to assess. Further research is required to determine the best mode of administration.
OBJECTIVES: To determine the effect of continuous distending pressure in the form of CPAP on the need for IPPV and associated morbidity in spontaneously breathing preterm infants with respiratory distress.
SEARCH METHODS: We used the standard strategy of Cochrane Neonatal to search CENTRAL (2020, Issue 6); Ovid MEDLINE and Epub Ahead of Print, In-Process & Other Non-Indexed Citations, Daily and Versions; and CINAHL on 30 June 2020. We also searched clinical trials databases and the reference lists of retrieved articles for randomised controlled trials and quasi-randomised trials.
SELECTION CRITERIA: All randomised or quasi-randomised trials of preterm infants with respiratory distress were eligible. Interventions were CPAP by mask, nasal prong, nasopharyngeal tube or endotracheal tube, compared with spontaneous breathing with supplemental oxygen as necessary.
DATA COLLECTION AND ANALYSIS: We used standard methods of Cochrane and its Neonatal Review Group, including independent assessment of risk of bias and extraction of data by two review authors. We used the GRADE approach to assess the certainty of evidence. Subgroup analyses were planned on the basis of birth weight (greater than or less than 1000 g or 1500 g), gestational age (groups divided at about 28 weeks and 32 weeks), timing of application (early versus late in the course of respiratory distress), pressure applied (high versus low) and trial setting (tertiary compared with non-tertiary hospitals; high income compared with low income) MAIN RESULTS: We included five studies involving 322 infants; two studies used face mask CPAP, two studies used nasal CPAP and one study used endotracheal CPAP and continuing negative pressure for a small number of less ill babies. For this update, we included one new trial. CPAP was associated with lower risk of treatment failure (death or use of assisted ventilation) (typical risk ratio (RR) 0.64, 95% confidence interval (CI) 0.50 to 0.82; typical risk difference (RD) -0.19, 95% CI -0.28 to -0.09; number needed to treat for an additional beneficial outcome (NNTB) 6, 95% CI 4 to 11; I2 = 50%; 5 studies, 322 infants; very low-certainty evidence), lower use of ventilatory assistance (typical RR 0.72, 95% CI 0.54 to 0.96; typical RD -0.13, 95% CI -0.25 to -0.02; NNTB 8, 95% CI 4 to 50; I2 = 55%; very low-certainty evidence) and lower overall mortality (typical RR 0.53, 95% CI 0.34 to 0.83; typical RD -0.11, 95% CI -0.18 to -0.04; NNTB 9, 95% CI 2 to 13; I2 = 0%; 5 studies, 322 infants; moderate-certainty evidence). CPAP was associated with increased risk of pneumothorax (typical RR 2.48, 95% CI 1.16 to 5.30; typical RD 0.09, 95% CI 0.02 to 0.16; number needed to treat for an additional harmful outcome (NNTH) 11, 95% CI 7 to 50; I2 = 0%; 4 studies, 274 infants; low-certainty evidence). There was no evidence of a difference in bronchopulmonary dysplasia, defined as oxygen dependency at 28 days (RR 1.04, 95% CI 0.35 to 3.13; I2 = 0%; 2 studies, 209 infants; very low-certainty evidence). The trials did not report use of surfactant, intraventricular haemorrhage, retinopathy of prematurity, necrotising enterocolitis and neurodevelopment outcomes in childhood.
AUTHORS' CONCLUSIONS: In preterm infants with respiratory distress, the application of CPAP is associated with reduced respiratory failure, use of mechanical ventilation and mortality and an increased rate of pneumothorax compared to spontaneous breathing with supplemental oxygen as necessary. Three out of five of these trials were conducted in the 1970s. Therefore, the applicability of these results to current practice is unclear. Further studies in resource-poor settings should be considered and research to determine the most appropriate pressure level needs to be considered.