Displaying publications 61 - 69 of 69 in total

Abstract:
Sort:
  1. Quah Y, Mohd Ismail NI, Ooi JLS, Affendi YA, Abd Manan F, Teh LK, et al.
    J Zhejiang Univ Sci B, 2019 1 8;20(1):59-70.
    PMID: 30614230 DOI: 10.1631/jzus.B1700586
    Globally, peptide-based anticancer therapies have drawn much attention. Marine organisms are a reservoir of anticancer peptides that await discovery. In this study, we aimed to identify cytotoxic oligopeptides from Sarcophyton glaucum. Peptides were purified from among the S. glaucum hydrolysates produced by alcalase, chymotrypsin, papain, and trypsin, guided by a methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay on the human cervical cancer (HeLa) cell line for cytotoxicity evaluation. Purification techniques adopted were membrane ultrafiltration, gel filtration chromatography, solid phase extraction (SPE), and reversed-phase high-performance liquid chromatography (RP-HPLC). Purified peptides were identified by de novo peptide sequencing. From papain hydrolysate, three peptide sequences were identified: AGAPGG, AERQ, and RDTQ (428.45, 502.53, and 518.53 Da, respectively). Peptides synthesized from these sequences exhibited cytotoxicity on HeLa cells with median effect concentration (EC50) values of 8.6, 4.9, and 5.6 mmol/L, respectively, up to 5.8-fold stronger than the anticancer drug 5-fluorouracil. When tested at their respective EC50, AGAPGG, AERQ, and RDTQ showed only 16%, 25%, and 11% cytotoxicity to non-cancerous Hek293 cells, respectively. In conclusion, AERQ, AGAPGG, and RDTQ are promising candidates for future development as peptide-based anticancer drugs.
    Matched MeSH terms: Aquatic Organisms
  2. Djearamane S, Lim YM, Wong LS, Lee PF
    PeerJ, 2019;7:e7582.
    PMID: 31579572 DOI: 10.7717/peerj.7582
    Background: Zinc oxide nanoparticles (ZnO NPs) are widely used in household and cosmetic products which imply an increased releasing of these particles into the environment, especially aquatic ecosystems, resulting in the need of assessing the potential toxic effects of ZnO NPS on the aquatic organisms, particularly on microalgae which form the base for food chain of aquatic biota. The present study has investigated the dose- and time-dependent cellular accumulation and the corresponding cytotoxic effects of increasing concentrations of ZnO NPs from 10-200 μg/mL on microalga Haematococcus pluvialis at an interval of 24 h for 96 h.

    Methods: The scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX) was used to qualitatively detect the cellular accumulation of ZnO NPs in algal cells, while inductively coupled plasma optical emission spectrometry (ICP OES) was performed to quantify the cell associated-zinc in algal cells. The percentage of cell death, reduction in algal biomass, and loss in photosynthetic pigments were measured to investigate the cytotoxic effects of ZnO NPs on H. pluvialis. Extracellular and intracellular changes in algal cells resulted from the treatment of ZnO NPs were demonstrated through optical, scanning, and transmission electron microscopic studies.

    Results: SEM-EDX spectrum evidenced the accumulation of ZnO NPs in algal biomass and ICP OES results reported a significant (p < 0.05) dose- and time-dependent accumulation of zinc in algal cells from 24 h for all the tested concentrations of ZnO NPs (10-200 μg/mL). Further, the study showed a significant (p < 0.05) dose- and time-dependent growth inhibition of H. pluvialis from 72 h at 10-200 μg/mL of ZnO NPs. The morphological examinations revealed substantial surface and intracellular damages in algal cells due to the treatment of ZnO NPs.

    Discussion: The present study reported the significant cellular accumulation of ZnO NPs in algal cells and the corresponding cytotoxic effects of ZnO NPs on H. pluvialis through the considerable reduction in algal cell viability, biomass, and photosynthetic pigments together with surface and intracellular damages.

    Matched MeSH terms: Aquatic Organisms
  3. Maxwell SL, Cazalis V, Dudley N, Hoffmann M, Rodrigues ASL, Stolton S, et al.
    Nature, 2020 10;586(7828):217-227.
    PMID: 33028996 DOI: 10.1038/s41586-020-2773-z
    Humanity will soon define a new era for nature-one that seeks to transform decades of underwhelming responses to the global biodiversity crisis. Area-based conservation efforts, which include both protected areas and other effective area-based conservation measures, are likely to extend and diversify. However, persistent shortfalls in ecological representation and management effectiveness diminish the potential role of area-based conservation in stemming biodiversity loss. Here we show how the expansion of protected areas by national governments since 2010 has had limited success in increasing the coverage across different elements of biodiversity (ecoregions, 12,056 threatened species, 'Key Biodiversity Areas' and wilderness areas) and ecosystem services (productive fisheries, and carbon services on land and sea). To be more successful after 2020, area-based conservation must contribute more effectively to meeting global biodiversity goals-ranging from preventing extinctions to retaining the most-intact ecosystems-and must better collaborate with the many Indigenous peoples, community groups and private initiatives that are central to the successful conservation of biodiversity. The long-term success of area-based conservation requires parties to the Convention on Biological Diversity to secure adequate financing, plan for climate change and make biodiversity conservation a far stronger part of land, water and sea management policies.
    Matched MeSH terms: Aquatic Organisms
  4. Tan, Soon Guan
    MyJurnal
    The world’s biodiversity is not distributed uniformly throughout the globe. Some areas such as the tropical rainforests, seas and coral reefs teem with the varieties of life whereas others such as some deserts and polar regions are almost devoid of them (Gaston, 2000). Malaysia, with her tropical jungles and seas, is rich with biodiversity. She is fortunate to have had eminent pioneers such as Ridley (1967), Corner (1972), Soepadmo (1972) and Whitmore (1983) to study her flora and Medway (1968) and Lim (1991) to study her fauna taxonomy. Other pioneers in Malaysian biology included Berry, Dhaliwal and Mohsin. These pioneers are then ably followed by workers such as Latiff, Kiew, Go, Khoo, Davidson, Saberi, Omar, Jambari, Idris, Zekri, Teo, Marziah, Tan, Mukherjee, Shapor, Yusoff, Azmi and many others studying the various subdisciplines of biology. In addition to the more obvious large plants and animals, microorganisms and aquatic organisms had not been neglected either. Workers such as Nawawi, Verghese, Ho and Faridah are known
    for their work on fungi while Fatimah, Phang, Japar and Anton had studied algae, seaweeds, diatoms and seagrasses. However, some of these workers have now either retired or are soon going to attain retirement age and the worrying part is that there are not many younger
    workers keen to pursue research in taxonomy and biosystematics, a prerequisite to further studies in ecology, genetics, biotechnology which in turn are prerequisites for rational conservation, management and sustainable utilization of our rich biological resources. With each passing day species are becoming extinct sometimes without us even knowing that they had ever existed. Even in a developed country such as the USA, one third of her plant and animal species are at risk of extinction (McCann, 2000). Hence, taxonomic and biosystematic studies of our plants, animals and microbes whether terrestrial or aquatic, freshwater and marine, should be priority areas. So should studies on their reproductive biology, life cycles, physiology, feeding habits, migration patterns, predators and their sensitivities to environmental changes.
    Matched MeSH terms: Aquatic Organisms
  5. Artasasta MA, Yanwirasti Y, Taher M, Djamaan A, Ariantari NP, Edrada-Ebel RA, et al.
    Mar Drugs, 2021 Nov 11;19(11).
    PMID: 34822502 DOI: 10.3390/md19110631
    Sponge-derived fungi have recently attracted attention as an important source of interesting bioactive compounds. Aspergillus nomius NC06 was isolated from the marine sponge Neopetrosia chaliniformis. This fungus was cultured on rice medium and yielded four compounds including three new oxisterigmatocystins, namely, J, K, and L (1, 2, and 3), and one known compound, aspergillicin A (4). Structures of the compounds were elucidated by 1D and 2D NMR spectroscopy and by high-resolution mass spectrometry. The isolated compounds were tested for cytotoxic activity against HT 29 colon cancer cells, where compounds 1, 2, and 4 exhibited IC50 values of 6.28, 15.14, and 1.63 µM, respectively. Under the fluorescence microscope by using a double staining method, HT 29 cells were observed to be viable, apoptotic, and necrotic after treatment with the cytotoxic compounds 1, 2, and 4. The result shows that compounds 1 and 2 were able to induce apoptosis and cell death in HT 29 cells.
    Matched MeSH terms: Aquatic Organisms
  6. Lopez JAV, Petitbois JG, Vairappan CS, Umezawa T, Matsuda F, Okino T
    Org. Lett., 2017 08 18;19(16):4231-4234.
    PMID: 28783344 DOI: 10.1021/acs.orglett.7b01869
    Two new chlorinated fatty acid amides, columbamides D (1) and E (2), along with apratoxins A and C and wewakazole, were isolated from the organic extract of a Moorea bouillonii sample from Sabah, Malaysia. Structure elucidation was accomplished by a combination of MS and NMR analyses. The total synthesis of all four stereoisomers of 1 was completed, and the absolute configuration was determined by chiral-phase HPLC and Marfey's analysis.
    Matched MeSH terms: Aquatic Organisms
  7. Mayer AMS, Hall ML, Lach J, Clifford J, Chandrasena K, Canton C, et al.
    Mar Drugs, 2021 Sep 07;19(9).
    PMID: 34564169 DOI: 10.3390/md19090506
    Manzamines are complex polycyclic marine-derived β-carboline alkaloids with reported anticancer, immunostimulatory, anti-inflammatory, antibacterial, antiviral, antimalarial, neuritogenic, hyperlipidemia, and atherosclerosis suppression bioactivities, putatively associated with inhibition of glycogen synthase kinase-3, cyclin-dependent kinase 5, SIX1, and vacuolar ATPases. We hypothesized that additional, yet undiscovered molecular targets might be associated with Manzamine A's (MZA) reported pharmacological properties. We report here, for the first time, that MZA selectively inhibited a 90 kDa ribosomal protein kinase S6 (RSK1) when screened against a panel of 30 protein kinases, while in vitro RSK kinase assays demonstrated a 10-fold selectivity in the potency of MZA against RSK1 versus RSK2. The effect of MZA on inhibiting cellular RSK1 and RSK2 protein expression was validated in SiHa and CaSki human cervical carcinoma cell lines. MZA's differential binding and selectivity toward the two isoforms was also supported by computational docking experiments. Specifically, the RSK1-MZA (N- and C-termini) complexes appear to have stronger interactions and preferable energetics contrary to the RSK2-MZA ones. In addition, our computational strategy suggests that MZA binds to the N-terminal kinase domain of RSK1 rather than the C-terminal domain. RSK is a vertebrate family of cytosolic serine-threonine kinases that act downstream of the ras-ERK1/2 (extracellular-signal-regulated kinase 1/2) pathway, which phosphorylates substrates shown to regulate several cellular processes, including growth, survival, and proliferation. Consequently, our findings have led us to hypothesize that MZA and the currently known manzamine-type alkaloids isolated from several sponge genera may have novel pharmacological properties with unique molecular targets, and MZA provides a new tool for chemical-biology studies involving RSK1.
    Matched MeSH terms: Aquatic Organisms
  8. Aldawsari MF, Ahmed MM, Fatima F, Anwer MK, Katakam P, Khan A
    Mar Drugs, 2021 Aug 20;19(8).
    PMID: 34436306 DOI: 10.3390/md19080467
    The objective of this work was to develop sustained-release Ca-alginate beads of apigenin using sodium alginate, a natural polysaccharide. Six batches were prepared by applying the ionotropic gelation technique, wherein calcium chloride was used as a crosslinking agent. The beads were evaluated for particle size, drug loading, percentage yield, and in vitro drug release. Particle size was found to decrease, and drug entrapment efficiency was enhanced with an increase in the polymer concentration. The dissolution study showed sustained drug release from the apigenin-loaded alginate beads with an increase in the polymer proportion. Based on the dissolution profiles, BD6 formulation was optimized and characterized for FTIR, DSC, XRD, and SEM, results of which indicated successful development of apigenin-loaded Ca alginate beads. MTT assay demonstrated a potential anticancer effect against the breast cancer MCF-7 cell lines. The antimicrobial activity exhibited effective inhibition in the bacterial and fungal growth rate. The DPPH measurement revealed that the formulation had substantial antioxidant activity, with EC50 value slightly lowered compared to pure apigenin. A stability study demonstrated that the BD6 was stable with similar (f2) drug release profiles in harsh condition. In conclusion, alginate-based beads could be used for sustaining the drug release of poorly water-soluble apigenin while also improving in vitro antitumor, antimicrobial, and antioxidant activity.
    Matched MeSH terms: Aquatic Organisms
  9. Ganasen M, Yaacob N, Rahman RN, Leow AT, Basri M, Salleh AB, et al.
    Int J Biol Macromol, 2016 Nov;92:1266-1276.
    PMID: 27506122 DOI: 10.1016/j.ijbiomac.2016.06.095
    Lipolytic enzymes with cold adaptation are gaining increasing interest due to their biotechnological prospective. Previously, a cold adapted family I.3 lipase (AMS8 lipase) was isolated from an Antarctic Pseudomonas. AMS8 lipase was largely expressed in insoluble form. The refolded His-tagged recombinant AMS8 lipase was purified with 23.0% total recovery and purification factor of 9.7. The purified AMS8 lipase migrated as a single band with a molecular weight approximately 65kDa via electrophoresis. AMS8 lipase was highly active at 30°C at pH 10. The half-life of AMS8 lipase was reported at 4 and 2h under the incubation of 30 and 40°C, respectively. The lipase was stable over a broad range of pH. It showed enhancement effect in its relative activity under the presence of Li(+), Na(+), K(+), Rb(+) and Cs(+) after 30min treatment. Heavy metal ions such as Cu(2+), Fe(3+) and Zn(2+) inhibited AMS8 activity. This cold adapted alkalophilic AMS lipase was also active in various organic solvent of different polarity. These unique properties of this biological macromolecule will provide considerable potential for many biotechnological applications and organic synthesis at low temperature.
    Matched MeSH terms: Aquatic Organisms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links