Displaying publications 61 - 80 of 684 in total

Abstract:
Sort:
  1. Molouki A, Mehrabadi MHF, Bashashati M, Akhijahani MM, Lim SHE, Hajloo SA
    Trop Anim Health Prod, 2019 Jun;51(5):1247-1252.
    PMID: 30689157 DOI: 10.1007/s11250-019-01817-1
    BACKGROUND: Based on our previous work, it was discovered that some Newcastle disease virus (NDV) isolates from backyard poultry between 2011 and 2013 in Iran formed a new separate cluster when phylogenetic analysis based on the complete F gene sequence was carried out. The novel cluster was designated subgenotype VII(L) and published.

    AIM: In the current study, for further validation, we initiated a comprehensive epidemiological study to identify the dominant NDV genotype(s) circulating within the country. Collection of samples was executed between October 2017 and February 2018 from 108 commercial broiler farms which reported clinical signs of respiratory disease in their broilers.

    RESULT: We report that 38 of the farms (> 35%) tested positive for NDV. The complete F gene sequences of seven of the isolates are shown as representative sequences in this study. According to the phylogenetic tree constructed, the recent broiler farm isolates clustered into the newly designated cluster VII(L) together with the older Iranian backyard poultry isolates in our previous work. All the sequences shared the same virulence-associated F cleavage site of 112RRQKR↓F117.

    CONCLUSION: Our phylogenetic analysis suggested that the NDV subgenotype VII(L) may have been derived from subgenotype VIId, and contrary to popular belief, subgenotype VIId may not be the dominant subgenotype in Iran. Tracking of the subgenotype on BLAST suggested that the NDV subgenotype VII(L), although previously unidentified, may have been circulating in this region as an endemic virus for at least a decade. Other NDV genotypes, however, have also been reported in Iran in recent years. Hence, ongoing study is aimed at determining the exact dominant NDV genotypes and subgenotypes in the country. This will be crucial in effective mitigation of outbreaks in Iranian broiler farms.

    Matched MeSH terms: Disease Outbreaks/veterinary
  2. Chung ELT, Predith M, Nobilly F, Samsudin AA, Jesse FFA, Loh TC
    Trop Anim Health Prod, 2018 Jun 20.
    PMID: 29926360 DOI: 10.1007/s11250-018-1641-4
    Brachiaria decumbens is an extremely productive tropical grass due to its aggressive growth habit and its adaptation to a varied range of soil types and environments. As a result of the vast availability, treated B. decumbens demonstrates as a promising local material that could be utilised as an improved diet for sheep and goats. Despite the fact that the grass significantly increases weight gains in grazing farm animals, there were many reports of general ill-thrift and sporadic outbreaks of photosensitivity in livestock due to the toxic compound of steroidal saponin found in B. decumbens. Ensiling and haymaking were found to be effective in removing toxin and undesirable compounds in the grass. Biological treatments using urea, activated charcoal, polyethylene glycol, and effective microorganisms were found to be useful in anti-nutritional factor deactivation and improving the nutritive values of feedstuffs. Besides, oral administration of phenobarbitone showed some degree of protection in sheep that fed on B. decumbens pasture. In this review, we aim to determine the effect of B. decumbens toxicity and possible treatment methods on the grass to be used as an improved diet for small ruminant.
    Matched MeSH terms: Disease Outbreaks
  3. Chen PC
    Trop Geogr Med, 1971 Sep;23(3):296-303.
    PMID: 5099001
    Matched MeSH terms: Disease Outbreaks*
  4. CHAI SIAW YEW, CHAI SZE FAN, LESLEY MAURICE BILUNG, AHMAD SYATIR TAHAR, ROSDI KIRA
    MyJurnal
    Listeria spp. and Salmonella spp. are capable of causing food-borne outbreaks and diseases in humans. This study aimed to quantify and detect the occurrence of Listeria monocytogenes and Salmonella Typhimurium in fruit juices by utilizing Most Probable Number (MPN) in combination with Polymerase Chain Reaction (PCR). In this study, a total of 50 fruit juice samples, consisting of orange, papaya, watermelon, honeydew and apple were collected from Kota Samarahan and Kuching. Specific Polymerase Chain Reaction (PCR) assay targeting the virulence gene, hlyA gene in L. monocytogenes and fliC gene in S. Typhimurium was performed, with the expected size of 730 bp and 559 bp, respectively. MPN analysis showed that the estimated microbial loads of Listeria spp. and Salmonella spp. in all samples were more than 1100 MPN/g. However, based on the PCR analysis, none of the samples (0%) were positive for L. monocytogenes or S. Typhimurium. This study presented as a preliminary food safety screening for the occurrence of Listeria spp. and Salmonella spp. from retailed fruit juices. Hygienic practices and food safety measures should be adhered by all food vendors and restaurants in order to avoid foodborne disease outbreaks in the future.
    Matched MeSH terms: Disease Outbreaks
  5. Jesmie, Babai, Rosdi, Kira, Fazia, Mohd Sinang, Lesley Maurice, Bilung
    MyJurnal
    Vibrio parahaemolyticus is a causative agent of foodborne outbreaks associated with the consumption of raw or under-cooked seafood. This study aimed to quantify and detect the occurrence of V. parahaemolyticus in freshwater fish by performing Most Probable Number (MPN) method in combination with Polymerase Chain Reaction (PCR). In this study, a total of 20 red tilapia (Oreochromis sp.) were collected from nearby local wet markets. Polymerase Chain Reaction (PCR) assay targeting the toxR gene in V. parahaemolyticus was performed, with the expected DNA amplification size of 368 bp. MPN analysis showed that the estimated microbial load of V. parahaemolyticus were more than 1100 MPN/g. The result of the PCR assay confirmed the presence of V. parahaemolyticus in 90% of the isolates. This positive detection elucidated the presence of food-borne bacteria in freshwater fish from local wet-market which may affect not only the health of fish stocks but also raise public health concerns.
    Matched MeSH terms: Disease Outbreaks
  6. Saleem Z, Hassali MA
    Travel Med Infect Dis, 2018 10 16;27:127.
    PMID: 30339826 DOI: 10.1016/j.tmaid.2018.10.013
    Matched MeSH terms: Disease Outbreaks/prevention & control; Disease Outbreaks/statistics & numerical data*
  7. Li K, Yan S, Wang N, He W, Guan H, He C, et al.
    Transbound Emerg Dis, 2020 Jan;67(1):121-132.
    PMID: 31408582 DOI: 10.1111/tbed.13330
    Since its first emergence in 1998 in Malaysia, Nipah virus (NiV) has become a great threat to domestic animals and humans. Sporadic outbreaks associated with human-to-human transmission caused hundreds of human fatalities. Here, we collected all available NiV sequences and combined phylogenetics, molecular selection, structural biology and receptor analysis to study the emergence and adaptive evolution of NiV. NiV can be divided into two main lineages including the Bangladesh and Malaysia lineages. We formly confirmed a significant association with geography which is probably the result of long-term evolution of NiV in local bat population. The two NiV lineages differ in many amino acids; one change in the fusion protein might be involved in its activation via binding to the G protein. We also identified adaptive and positively selected sites in many viral proteins. In the receptor-binding G protein, we found that sites 384, 386 and especially 498 of G protein might modulate receptor-binding affinity and thus contribute to the host jump from bats to humans via the adaption to bind the human ephrin-B2 receptor. We also found that site 1645 in the connector domain of L was positive selected and involved in adaptive evolution; this site might add methyl groups to the cap structure present at the 5'-end of the RNA and thus modulate its activity. This study provides insight to assist the design of early detection methods for NiV to assess its epidemic potential in humans.
    Matched MeSH terms: Disease Outbreaks*
  8. Toh X, Soh ML, Ng MK, Yap SC, Harith N, Fernandez CJ, et al.
    Transbound Emerg Dis, 2019 Sep;66(5):1884-1893.
    PMID: 31059176 DOI: 10.1111/tbed.13218
    Equine influenza is a major cause of respiratory infections in horses and can spread rapidly despite the availability of commercial vaccines. In this study, we carried out molecular characterization of Equine Influenza Virus (EIV) isolated from the Malaysian outbreak in 2015 by sequencing of the HA and NA gene segments using Sanger sequencing. The nucleotide and amino acid sequences of HA and NA were compared with representative Florida clade 1 and clade 2 strains using phylogenetic analysis. The Florida clade 1 viruses identified in this outbreak revealed numerous amino acid substitutions in the HA protein as compared to the current OIE vaccine strain recommendations and representative strains of circulating Florida sub-lineage clade 1 and clade 2. Differences in HA included amino acids located within antigenic sites which could lead to reduced immune recognition of the outbreak strain and alter the effectiveness of vaccination against the outbreak strain. Detailed surveillance and genetic information sharing could allow genetic drift of equine influenza viruses to be monitored more effectively on a global basis and aid in refinement of vaccine strain selection for EIV.
    Matched MeSH terms: Disease Outbreaks/veterinary*
  9. Sosa Portugal S, Cortey M, Tello M, Casanovas C, Mesonero-Escuredo S, Barrabés S, et al.
    Transbound Emerg Dis, 2021 Mar;68(2):519-530.
    PMID: 32619306 DOI: 10.1111/tbed.13709
    The present study was aimed to assess the diversity of influenza A viruses (IAV) circulating in pig farms in the Iberian Peninsula. The study included two different situations: farms suffering respiratory disease outbreaks compatible with IAV (n = 211) and randomly selected farms without overt respiratory disease (n = 19). Initially, the presence of IAV and lineage determination was assessed by qRT-PCR using nasal swabs. IAV was confirmed in 145 outbreaks (68.7%), mostly in nurseries (53/145; 36.5%). Subtyping by RT-qPCR was possible in 94 of those cases being H1avN2hu (33.6%), H1avN1av (24.3%) and H1huN2hu (18.7%), the most common lineages. H3huN2hu and H1pdmN1pdm represented 7.5% and 6.5% of the cases, respectively. As for the randomly selected farms, 15/19 (78.9%) were positive for IAV. Again, the virus was mostly found in nurseries and H1avN2hu was the predominant lineage. Virus isolation in MDCK cells was attempted from positive cases. Sixty of the isolates were fully sequenced with Illumina MiSeq®. Within those 60 isolates, the most frequent genotypes had internal genes of avian origin, and these were D (19/60; 31.7%) and A (11/60; 18.3%), H1avN2hu and H1avN1av, respectively. In addition, seven previously unreported genotypes were identified. In two samples, more than one H or N were found and it was not possible to precisely establish their genotypes. A great diversity was observed in the phylogenetic analysis. Notably, four H3 sequences clustered with human isolates from 2004-05 (Malaysia and Denmark) that were considered uncommon in pigs. Overall, this study indicates that IAV is a very common agent in respiratory disease outbreaks in Spanish pig farms. The genetic diversity of this virus is continuously expanding with clear changes in the predominant subtypes and lineages in relatively short periods of time. The current genotyping scheme has to be enlarged to include the new genotypes that could be found in the future.
    Matched MeSH terms: Disease Outbreaks/veterinary*
  10. Zhang X, Deng T, Lu J, Zhao P, Chen L, Qian M, et al.
    Transbound Emerg Dis, 2020 May;67(3):1349-1355.
    PMID: 31943814 DOI: 10.1111/tbed.13477
    Infectious bronchitis virus (IBV), an ongoing emergence enveloped virus with a single-stranded positive-sense RNA genome, belongs to the Gammacoronavirus genus in the Coronaviridae family. IBV-associated tracheitis, nephritis, salpingitis, proventriculitis and egg drop have caused devastating economic losses to poultry industry worldwide. Since the end of 2018, a remarkably increasing number of commercial broilers and layers, vaccinated or not, were infected with IBV in China. Here, we described two IB outbreaks with severe respiratory system or kidney injury in IBV-vaccinated commercial poultry farms in central China. Other possible causative viral pathogens, including avian influenza virus (AIV), Newcastle disease virus (NDV) and Kedah fatal kidney syndrome virus (KFKSV), were excluded by reverse transcription-polymerase chain reaction (RT-PCR), and three virulent IBV strains, HeN-1/China/2019, HeN-2/China/2019 and HeN-101/China/2019, were identified. Although the gross pathologic appearance of these two IB outbreaks was different, the newly identified IBV strains were all closely related to the ck/China/I0529/17 strain and grouped into GI-19 genotype clade based on the sequencing and phylogenetic analysis of the complete S1 genes. Moreover, there are still some evolutionary distance between the newly identified IBV strains, HeN-101/China/2019 in particular, and other GI-19 strains, suggesting that Chinese IBV strains constantly emerge and evolve towards different directions. In conclusion, this study provided an insight of the recently emerging IBV outbreaks in IBV-vaccinated commercial poultry farms and identified the genetic characteristics of three virulent GI-19 IBV strains, which shows the need to carry out proper preventive measures and control strategies.
    Matched MeSH terms: Disease Outbreaks
  11. Abolnik C, Mubamba C, Wandrag DBR, Horner R, Gummow B, Dautu G, et al.
    Transbound Emerg Dis, 2018 Apr;65(2):e393-e403.
    PMID: 29178267 DOI: 10.1111/tbed.12771
    It is widely accepted that Newcastle disease is endemic in most African countries, but little attention has been afforded to establishing the sources and frequency of the introductions of exotic strains. Newcastle disease outbreaks have a high cost in Africa, particularly on rural livelihoods. Genotype VIIh emerged in South-East Asia and has since caused serious outbreaks in poultry in Malaysia, Indonesia, southern China, Vietnam and Cambodia. Genotype VIIh reached the African continent in 2011, with the first outbreaks reported in Mozambique. Here, we used a combination of phylogenetic evidence, molecular dating and epidemiological reports to trace the origins and spread of subgenotype VIIh Newcastle disease in southern Africa. We determined that the infection spread northwards through Mozambique, and then into the poultry of the north-eastern provinces of Zimbabwe. From Mozambique, it also reached neighbouring Malawi and Zambia. In Zimbabwe, the disease spread southward towards South Africa and Botswana, causing outbreaks in backyard chickens in early-to-mid 2013. In August 2013, the disease entered South Africa's large commercial industry, and the entire country was infected within a year, likely through fomites and the movements of cull chickens. Illegal poultry trading or infected waste from ships and not wild migratory birds was the likely source of the introduction to Mozambique in 2011.
    Matched MeSH terms: Disease Outbreaks/veterinary*
  12. Chanchaidechachai T, Saatkamp H, de Jong M, Inchaisri C, Hogeveen H, Premashthira S, et al.
    Transbound Emerg Dis, 2022 Nov;69(6):3823-3836.
    PMID: 36321258 DOI: 10.1111/tbed.14754
    Foot-and-mouth disease (FMD) is one of the most important animal diseases hindering livestock production in Thailand. In this study, a temporal and spatial analysis at the subdistrict level was performed on FMD outbreak reports in Thailand from 2011 to 2018. Risk factors associated with FMD outbreaks were furthermore investigated using generalized estimating equations. The results showed that the incidence of FMD outbreaks was the highest in 2016 and was affected by season, with a peak in FMD outbreaks occurring in the rainy-winter season, during October to December. FMD outbreaks were mostly distributed in small clusters within a few subdistricts. Some high-risk areas with repeated outbreaks were detected in the central regions. Risk factors, including the increase of subdistrict's size of the dairy population, beef population or pig population, the low percentage of forest area, subdistricts in the provinces adjacent to Malaysia, the presence of a livestock market and the occurrence of an FMD outbreak in a neighbouring subdistrict in the previous month significantly increased the odds of having an FMD outbreak. The increase in proximity to the nearest subdistrict with an FMD outbreak in the previous month decreased the odds of having FMD outbreaks. This study helped to identify high-risk areas and periods of FMD outbreaks in Thailand. Together with the identified risk factors, its results can be used to optimize the FMD control programme in Thailand and in other countries having a similar livestock industry and FMD situation.
    Matched MeSH terms: Disease Outbreaks/veterinary
  13. Dom NC, Ahmad AH, Latif ZA, Ismail R
    Trans R Soc Trop Med Hyg, 2013 Nov;107(11):715-22.
    PMID: 24062522 DOI: 10.1093/trstmh/trt073
    Dengue has emerged as one of the major public health problems in Malaysia. The Ministry of Health, Malaysia, is committed in monitoring and controlling this disease for many years. The objective of this study is to analyze the dengue outbreak pattern on a monthly basis in Subang Jaya in terms of their spatial dissemination and hotspot identification.
    Matched MeSH terms: Disease Outbreaks/statistics & numerical data*
  14. Liew KB, Lepesteur M
    Trans R Soc Trop Med Hyg, 2006 Oct;100(10):949-55.
    PMID: 16730364 DOI: 10.1016/j.trstmh.2005.11.018
    This study evaluates and discusses the impact of the rural health improvement scheme in reducing the incidence of dysentery, enteric fever, cholera and viral hepatitis in Sarawak, Malaysia, using data compiled from state and federal health department reports. This study suggests that from 1963 to 2002, water supply intervention contributed to a more than 200-fold decrease in dysentery and a 60-fold decrease in enteric fever. Variations in reporting of viral hepatitis during that period make it difficult to detect a trend. Cholera was still endemic in 2002. Cholera and dysentery outbreaks, occurring when rural populations relied on contaminated rivers for their water supply, suggested that sanitation intervention was not as effective in reducing waterborne diseases. Recommendations are made for successive one-component interventions focusing on catchment management to ensure protection of current and alternative water supplies.
    Matched MeSH terms: Disease Outbreaks/prevention & control
  15. Che Dom N, Faiz Madzlan M, Nadira Yusoff SN, Hassan Ahmad A, Ismail R, Nazrina Camalxaman S
    Trans R Soc Trop Med Hyg, 2016 Apr;110(4):237-45.
    PMID: 27076510 DOI: 10.1093/trstmh/trw015
    Dengue fever (DF) is an urban vector-borne disease transmitted by Aedes aegypti and Aedes albopictus. Both species deposit their eggs in favorable breeding sites either in natural or artificial containers. An understanding of their habitat characteristics is crucial in curbing DF outbreaks
    Matched MeSH terms: Disease Outbreaks
  16. Dass S, Ngui R, Gill BS, Chan YF, Wan Sulaiman WY, Lim YAL, et al.
    Trans R Soc Trop Med Hyg, 2021 08 02;115(8):922-931.
    PMID: 33783526 DOI: 10.1093/trstmh/trab053
    BACKGROUND: We studied the spatiotemporal spread of a chikungunya virus (CHIKV) outbreak in Sarawak state, Malaysia, during 2009-2010.

    METHODS: The residential addresses of 3054 notified CHIKV cases in 2009-2010 were georeferenced onto a base map of Sarawak with spatial data of rivers and roads using R software. The spatiotemporal spread was determined and clusters were detected using the space-time scan statistic with SaTScan.

    RESULTS: Overall CHIKV incidence was 127 per 100 000 population (range, 0-1125 within districts). The average speed of spread was 70.1 km/wk, with a peak of 228 cases/wk and the basic reproduction number (R0) was 3.1. The highest age-specific incidence rate was 228 per 100 000 in adults aged 50-54 y. Significantly more cases (79.4%) lived in rural areas compared with the general population (46.2%, p<0.0001). Five CHIKV clusters were detected. Likely spread was mostly by road, but a fifth of rural cases were spread by river travel.

    CONCLUSIONS: CHIKV initially spread quickly in rural areas mainly via roads, with lesser involvement of urban areas. Delayed spread occurred via river networks to more isolated areas in the rural interior. Understanding the patterns and timings of arboviral outbreak spread may allow targeted vector control measures at key transport hubs or in large transport vehicles.

    Matched MeSH terms: Disease Outbreaks
  17. Dutt AK, Alwi S, Velauthan T
    Trans R Soc Trop Med Hyg, 1971;65(6):815-8.
    PMID: 5157442
    Matched MeSH terms: Disease Outbreaks*
  18. Landman WJ, Schrier CC
    Tijdschr Diergeneeskd, 2004 Dec 1;129(23):782-96.
    PMID: 15624878
    Avian influenza viruses are highly infectious micro-organisms that primarily affect birds. Nevertheless, they have also been isolated from a number of mammals, including humans. Avian influenza virus can cause large economic losses to the poultry industry because of its high mortality. Although there are pathogenic variants with a low virulence and which generally cause only mild, if any, clinical symptoms, the subtypes H5 and H7 can mutate from a low to a highly virulent (pathogenic) virus and should be taken into consideration in eradication strategies. The primary source of infection for commercial poultry is direct and indirect contact with wild birds, with waterfowl forming a natural reservoir of the virus. Live-poultry markets, exotic birds, and ostriches also play a significant role in the epidemiology of avian influenza. The secondary transmission (i.e., between poultry farms) of avian influenza virus is attributed primarily to fomites and people. Airborne transmission is also important, and the virus can be spread by aerosol in humans. Diagnostic tests detect viral proteins and genes. Virus-specific antibodies can be traced by serological tests, with virus isolation and identification being complementary procedures. The number of outbreaks of avian influenza seems to be increasing - over the last 5 years outbreaks have been reported in Italy, Hong Kong, Chile, the Netherlands, South Korea, Vietnam, Japan, Thailand, Cambodia, Indonesia, Laos, China, Pakistan, United States of America, Canada, South Africa, and Malaysia. Moreover, a growing number of human cases of avian influenza, in some cases fatal, have paralleled the outbreaks in commercial poultry. There is great concern about the possibility that a new virus subtype with pandemic potential could emerge from these outbreaks. From the perspective of human health, it is essential to eradicate the virus from poultry; however, the large number of small-holdings with poultry, the lack of control experience and resources, and the international scale of transmission and infection make rapid control and long-term prevention of recurrence extremely difficult. In the Western world, the renewed interest in free-range housing carries a threat for future outbreaks. The growing ethical objections to the largescale culling of birds require a different approach to the eradication of avian influenza.
    Matched MeSH terms: Disease Outbreaks/prevention & control; Disease Outbreaks/veterinary
  19. Suppiah J, Yusof MA, Othman KA, Saraswathy TS, Thayan R, Kasim FM, et al.
    PMID: 21323171
    The 2009 pandemic influenza A(H1N1) infection in Malaysia was first reported in May 2009 and oseltamivir was advocated for confirmed cases in postexposure prophylaxis. However, there are cases of oseltamivir-resistance reported among H1N1-positive patients in other countries. Resistance is due to substitution of histidine by tyrosine at residue 275 (H275Y) of neuraminidase (NA). In this study, we have employed Sanger sequencing method to investigate the occurrence of mutations in NA segments of 67 pandemic 2009 A(H1N1) viral isolates from Malaysian patients that could lead to probable oseltamivir resistance. The sequencing analysis did not yield mutation at residue 275 for all 67 isolates indicating that our viral isolates belong to the wild type and do not confer resistance to oseltamivir.
    Matched MeSH terms: Disease Outbreaks
  20. Jamaiah I, Rohela M, Nissapatorn V, Maizatulhikma MM, Norazlinda R, Syaheerah H, et al.
    PMID: 16438209
    Dengue fever and dengue hemorrhagic fever have been known to be endemic and reportable diseases in Malaysia since 1971. Major outbreaks occurred in 1973, 1982 and in 1998. For the past few decades until now. many studies have been performed to investigate the importance of these two diseases in Malaysia. A retrospective study was carried out in Hospital Tengku Ampuan Rahimah Klang to find the prevalence of these diseases. The data was collected from the record department of this hospital starting from the year 1999 until 2003 (5 years). A total of 6,577 cases of dengue fever and 857 cases of dengue hemorrhagic fever were reported. From the year 2000 onwards, cases of dengue fever had increased tremendously. However for the year 2001, there was a slight decrease in the reported cases. Most cases occurred in 2003, increasing from 674 in 1999 to 2,813 in 2003. Highest incidence was seen in Malay males more than 12 years of age. However, the cases of dengue hemorrhagic fever declined tremendously throughout the years. Most cases occurred in 1999 with 674 cases, then declining to only one in the year 2001 before it increased to 60 and 72 in the years 2002 and 2003, respectively. Most cases occurred in patients above 12 years old, the majority of which were Malay males.
    Matched MeSH terms: Disease Outbreaks
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links