Displaying publications 61 - 80 of 423 in total

Abstract:
Sort:
  1. Murayama A, Hoshi M, Saito H, Kamamoto S, Tanaka M, Kawashima M, et al.
    Respiration, 2022;101(12):1088-1098.
    PMID: 36353778 DOI: 10.1159/000526576
    BACKGROUND: Financial relationships between healthcare professionals and pharmaceutical companies have historically caused conflicts of interest and unduly influenced patient care. However, little was known about such relationship and its effect in clinical practice among specialists in respiratory medicine.

    METHODS: Based on the retrospective analysis of payment data made available by all 92 pharmaceutical companies in Japan, this study evaluated the magnitude and trend of financial relationships between all board-certified Japanese respiratory specialists and pharmaceutical companies between 2016 and 2019. Magnitude and prevalence of payments for specialists were analyzed descriptively. The payment trends were assessed using the generalized estimating equations for the payment per specialist and the number of specialists with payments.

    RESULTS: Among all 7,114 respiratory specialists certified as of August 2021, 4,413 (62.0%) received a total of USD 53,547,391 and 74,195 counts from 72 (78.3%) pharmaceutical companies between 2016 and 2019. The median (interquartile range) 4-year combined payment values per specialist were USD 2,210 (USD 715-8,178). At maximum, one specialist received USD 495,332 personal payments over the 4 years. Both payments per specialist and number of specialists with payments significantly increased during the 4-year period, with 7.8% (95% CI: 5.5-9.8; p < 0.001) in payments and 1.5% (95% CI: 0.61-2.4; p = 0.001) in number of specialists with payments, respectively.

    CONCLUSION: The majority of respiratory specialists had increasingly received more personal payments from pharmaceutical companies for the reimbursement of lecturing, consulting, and writing between 2016 and 2019. These increasing financial relationships with pharmaceutical companies might cause conflicts of interest among respiratory physicians.

    Matched MeSH terms: Pharmaceutical Preparations
  2. Ahmad NS, Makmor-Bakry M, Hatah E
    Res Social Adm Pharm, 2020 10;16(10):1359-1369.
    PMID: 31987771 DOI: 10.1016/j.sapharm.2020.01.002
    BACKGROUND: Drug price transparency is defined as readily available information on the price of pharmaceutical drugs to either authorities or consumers. Price transparency, together with other information, helps define the value of drugs and enables informed decision making. It has also been used as a reference in drug price setting mechanisms in some countries' pricing policies.

    OBJECTIVE: To investigate the evidence available: 1) on government initiatives to mandate transparency in drug pricing worldwide, 2) on the reported effects of drug pricing transparency initiatives on drug price, and 3) on the limitations and barriers of the implementation of drug pricing transparency.

    METHODS: Databases such as Medline-Ovid, Cochrane Central Register, PubMed, and Science Direct were used to search for relevant literature from inception to February 2018. A manual search of grey literature such as policy papers, governmental publications, and websites was also performed to obtain the information that was not available in the articles. Using narrative synthesis, the results were critically assessed and summarized according to its context of drug pricing approaches.

    RESULTS: Of the 4382 relevant articles located, 12 studies met the inclusion criteria for drug price transparency initiatives. Only 3 studies reported the outcomes on the regulation of drug prices. Two studies in South Africa showed that price transparency initiatives did not necessarily reduce drug prices. Another study in the Philippines indicated a reduction in medicines' price based on the effects of government-mediated access prices. The limitations and barriers in price transparency initiatives include fragmentation of the healthcare system and nondisclosure of discounts and rebates by pharmaceutical companies.

    CONCLUSION: Drug pricing transparency initiatives have been implemented in many countries and commonly coexist with a country's pricing policies. Nevertheless, due to sparse evidence, the effect of drug price transparency initiatives on price control is still inconclusive.

    Matched MeSH terms: Pharmaceutical Preparations*
  3. Balan S, Hassali MA, Mak VSL
    Res Social Adm Pharm, 2017 Nov;13(6):1219-1221.
    PMID: 28576615 DOI: 10.1016/j.sapharm.2017.05.013
    Matched MeSH terms: Pharmaceutical Preparations/administration & dosage
  4. Balan S, Hassali MA, Mak VSL
    Res Social Adm Pharm, 2017 May-Jun;13(3):653-655.
    PMID: 27493130 DOI: 10.1016/j.sapharm.2016.06.014
    The pediatric population is an enormously diverse segment of population varying both in size and age. The diversity caused pharmacists face various challenges primarily related to procuring, provision as well as use of drugs in this group of patients. Pediatric dose calculation is particularly a concern for pharmacists. Another challenge faced by pharmacists is unavailability of suitable formulations for pediatric use. This has also led many pharmacists to prepare extemporaneous liquid preparations, even though stability data on such preparations are scarce. Some extemporaneous preparations contain excipients which are potentially harmful in children. Besides that, inadequate labeling and drug information for pediatric drug use had not only challenged pharmacists in recommending and optimizing drug use in children, but also inadvertently caused many drugs used outside the approved terms of the product license (off-label use). Pharmacists are striving to stay connected to overcome the common and comparable challenges faced in their day to day duties and strive to maximize the safe and effective use of medicines for children.
    Matched MeSH terms: Pharmaceutical Preparations/administration & dosage*; Pharmaceutical Preparations/chemistry
  5. Sengupta P, Das A, Ibrahim F, Mandal UK, Chatterjee B, Mahmood S, et al.
    Regul Toxicol Pharmacol, 2016 Aug 26;81:155-161.
    PMID: 27569202 DOI: 10.1016/j.yrtph.2016.08.009
    It has been reported that the major cause of mortality in diabetes is cardiovascular diseases and contribution of hypertension is significant in this context. Pioglitazone, a thiazolidinedione class of therapeutic agent is used to treat type 2 diabetes mellitus. Telmisartan, an angiotensin receptor blocker antihypertensive has been reported to have beneficial effect if co-administered with pioglitazone for the management of diabetes complications. The present research work aims to evaluate the safety/toxicity profile of this combination in rat model. The investigation was carried out after co-administering the drugs to the rats for 28 days at three dose levels of 50, 100 and 150 mg/kg covering low to high dose ranges. Various hematological and biochemical parameters were studied in addition to the histopathology of the major organs in order to evaluate the toxicity profile of the combination. Absence of mortality and histopathological changes as well as unaltered hematological and biochemical parameters was observed. This preliminary investigation concludes that the combination of pioglitazone and telmisartan can primarily be stated as safe in animals, even at the dose level which is several folds higher than the intended human dose. Thus, this combination can be explored in future to develop a rational therapy regimen to treat hypertensive diabetic patients.
    Matched MeSH terms: Pharmaceutical Preparations
  6. Wong TW
    Recent Pat Drug Deliv Formul, 2011 Sep;5(3):227-43.
    PMID: 21834774
    Design of oral fast-release solid dispersion of poorly water-soluble drugs has been a great challenge over past decades on issues of drug recrystallization, drug polymorphism, formulation limited to low drug-to-carrier ratio and drug particle aggregation in matrix. The complexity in solid dispersion design is envisaged to be resolvable by the use of nanoparticulate system as solid dosage form. This manuscript reviews several patented processing approaches of nanoparticulate solid dispersion that have been reported recently. Through drug nanoencapsulation, a higher content of drug may be delivered with less aggregation via placing the same drug mass in a greater number of tinier carriers. Nanoencapsulation, by its own process of formation, brings about submicron particles. Keeping drug in these nanoparticles, a remarkable rise in specific surface area of drug is realized for dissolution. The augmentation of drug dissolution can be sufficiently high to the extent that the influences of polymorphism and crystallization phenomenon on drug dissolution in a solid dispersion may be negligible.
    Matched MeSH terms: Pharmaceutical Preparations/administration & dosage*; Pharmaceutical Preparations/chemistry
  7. Sheshala R, Kok YY, Ng JM, Thakur RR, Dua K
    Recent Pat Drug Deliv Formul, 2015;9(3):237-48.
    PMID: 26205681
    Ophthalmic drug delivery system is very interesting and challenging due to the normal physiologically factor of eyes which reduces the bioavailability of ocular products. The development of new ophthalmic dosage forms for existing drugs to improve efficacy and bioavailability, patient compliance and convenience has become one of the main trend in the pharmaceuticals industry. The present review encompasses various conventional and novel ocular drug delivery systems, methods of preparation, characterization and recent research in this area. Furthermore, the information on various commercially available in situ gel preparations and the existing patents of in situ drug delivery systems i.e. in situ gel formation of pectin, in situ gel for therapeutic use, medical uses of in situ formed gels and in situ gelling systems as sustained delivery for front of eye are also covered in this review.
    Matched MeSH terms: Pharmaceutical Preparations/administration & dosage*; Pharmaceutical Preparations/chemistry
  8. Wui WT
    PMID: 25966873
    Matched MeSH terms: Pharmaceutical Preparations/administration & dosage; Pharmaceutical Preparations/chemistry*
  9. Lukman Nul Hakim Md Khairi, Farah Syakirah Ahmad, Aimi Shazana Muhammad Anuar, Nurul Ain Wan Omar, Nurul Najmi Muhammad, Nurulhayati Abd. Jamal, et al.
    Q Bulletin, 2020;1(29):28-35.
    MyJurnal
    Therapeutic drug monitoring (TDM) is a valuable clinical tool in optimisation of drug regimens. However, improper utilisation of TDM may lead to significant resource wastage and expose patients to avoidable trauma, toxicity, therapeutic failure and prolonged hospitalisation. This study aimed to reduce the percentage of inappropriate TDM sampling to our proposed standard of less than 20% within a four-month intervention period. A cross-sectional study was undertaken from January to December 2015 at the inpatient setting of Hospital Sultanah Nur Zahirah. Gentamicin and Vancomycin analytes were studied because these analytes accounted for 69.2% of total samples received in 2014. TDM Monitoring Form was used to collect sampling and dosage information to assess sampling appropriateness. A closed-ended self-administered questionnaire was distributed to a group of medical doctors to assess their knowledge on appropriate Gentamicin and Vancomycin TDM sampling method pre- and post-intervention. Prior to the intervention phase in October to December 2014, 79.4% of TDM were inappropriately sampled. The main contributing factors were inadequate knowledge among medical doctors, lack of sampling reminders for new TDM requests, and misunderstanding on sampling information for repeated TDM requests. 60-minute face-to-face educational sessions on TDM sampling method were conducted specifically for staff at the General Medical and Paediatric Departments, and two continuing medical education (CME) slots were held at the hospital level. Guidelines on TDM sampling was initiated and laminated copies were distributed to all wards. Implementation of TDM Alert System which consisted of digital reminders and physical stickers was also introduced. The interventions were able to reduce the inappropriate sampling percentage from 79.4% to 41.8% post-intervention, and to 19.1% in the recent monitoring phase of January until June 2019. Continuous close monitoring and sustainable implementation of the measures are vital as TDM sampling appropriateness may affect clinical interpretation of the results.
    Matched MeSH terms: Pharmaceutical Preparations
  10. Yang SY, Chen LY, Najoan E, Kallivayalil RA, Viboonma K, Jamaluddin R, et al.
    Psychiatry Clin Neurosci, 2018 Aug;72(8):572-579.
    PMID: 29761577 DOI: 10.1111/pcn.12676
    AIM: The aim of the present study was to survey the prevalence of antipsychotic polypharmacy and combined medication use across 15 Asian countries and areas in 2016.

    METHODS: By using the results from the fourth survey of Research on Asian Prescription Patterns on antipsychotics, the rates of polypharmacy and combined medication use in each country were analyzed. Daily medications prescribed for the treatment of inpatients or outpatients with schizophrenia, including antipsychotics, mood stabilizers, anxiolytics, hypnotics, and antiparkinson agents, were collected. Fifteen countries from Asia participated in this study.

    RESULTS: A total of 3744 patients' prescription forms were examined. The prescription patterns differed across these Asian countries, with the highest rate of polypharmacy noted in Vietnam (59.1%) and the lowest in Myanmar (22.0%). Furthermore, the combined use of other medications, expressed as highest and lowest rate, respectively, was as follows: mood stabilizers, China (35.0%) and Bangladesh (1.0%); antidepressants, South Korea (36.6%) and Bangladesh (0%); anxiolytics, Pakistan (55.7%) and Myanmar (8.5%); hypnotics, Japan (61.1%) and, equally, Myanmar (0%) and Sri Lanka (0%); and antiparkinson agents, Bangladesh (87.9%) and Vietnam (10.9%). The average psychotropic drug loading of all patients was 2.01 ± 1.64, with the highest and lowest loadings noted in Japan (4.13 ± 3.13) and Indonesia (1.16 ± 0.68), respectively.

    CONCLUSION: Differences in psychiatrist training as well as the civil culture and health insurance system of each country may have contributed to the differences in these rates. The concept of drug loading can be applied to other medical fields.

    Matched MeSH terms: Pharmaceutical Preparations
  11. Babu AK, Raja MKMM, Zehravi M, Mohammad BD, Anees MI, Prasad C, et al.
    Prog Biophys Mol Biol, 2023 Nov;184:1-12.
    PMID: 37652186 DOI: 10.1016/j.pbiomolbio.2023.08.004
    Quantum dots (QDs) are a class of remarkable materials that have garnered significant attention since their initial discovery. It is noteworthy to mention that it took approximately a decade for these materials to be successfully implemented in practical applications. While QDs have demonstrated notable optical properties, it is important to note that these attributes alone have not rendered them a feasible substitute for traditional organic dyes. Furthermore, it is worth noting that the substance under investigation exhibited inherent toxicity and instability in its initial state, primarily due to the presence of a heavy metal core. In the initial stages of research, it was observed that the integration of nanocomposites had a positive impact on the properties of QDs. The discovery of these nanocomposites was motivated by the remarkable properties exhibited by biocomposites found in nature. Recent discoveries have shed light on the potential utilization of QDs as a viable strategy for drug delivery, offering a promising avenue to enhance the efficacy of current pharmaceuticals and pave the way for the creation of innovative therapeutic approaches. The primary objective of this review was to elucidate the distinctive characteristics that render QDs highly suitable for utilization as nanocarriers. In this study, we will delve into the multifaceted applications of QDs as sensing nanoprobes and their utilization in diverse drug delivery systems. The focus of our investigation was directed toward the utilization of QD/polymer composites in sensing applications, with particular emphasis on their potential as chemical sensors, biosensors, and physical sensors.
    Matched MeSH terms: Pharmaceutical Preparations
  12. Wilkinson JL, Boxall ABA, Kolpin DW, Leung KMY, Lai RWS, Galbán-Malagón C, et al.
    Proc Natl Acad Sci U S A, 2022 Feb 22;119(8).
    PMID: 35165193 DOI: 10.1073/pnas.2113947119
    Environmental exposure to active pharmaceutical ingredients (APIs) can have negative effects on the health of ecosystems and humans. While numerous studies have monitored APIs in rivers, these employ different analytical methods, measure different APIs, and have ignored many of the countries of the world. This makes it difficult to quantify the scale of the problem from a global perspective. Furthermore, comparison of the existing data, generated for different studies/regions/continents, is challenging due to the vast differences between the analytical methodologies employed. Here, we present a global-scale study of API pollution in 258 of the world's rivers, representing the environmental influence of 471.4 million people across 137 geographic regions. Samples were obtained from 1,052 locations in 104 countries (representing all continents and 36 countries not previously studied for API contamination) and analyzed for 61 APIs. Highest cumulative API concentrations were observed in sub-Saharan Africa, south Asia, and South America. The most contaminated sites were in low- to middle-income countries and were associated with areas with poor wastewater and waste management infrastructure and pharmaceutical manufacturing. The most frequently detected APIs were carbamazepine, metformin, and caffeine (a compound also arising from lifestyle use), which were detected at over half of the sites monitored. Concentrations of at least one API at 25.7% of the sampling sites were greater than concentrations considered safe for aquatic organisms, or which are of concern in terms of selection for antimicrobial resistance. Therefore, pharmaceutical pollution poses a global threat to environmental and human health, as well as to delivery of the United Nations Sustainable Development Goals.
    Matched MeSH terms: Pharmaceutical Preparations
  13. Saba J, Audureau E, Bizé M, Koloshuk B, Ladner J
    Popul Health Manag, 2013 Apr;16(2):82-9.
    PMID: 23276290 DOI: 10.1089/pop.2012.0049
    The objective was to develop and validate a multilateral index to determine patient ability to pay for medication in low- and middle-income countries. Primary data were collected in 2009 from 117 cancer patients in China, India, Thailand, and Malaysia. The initial tool included income, expenditures, and assets-based items using ad hoc determined brackets. Principal components analysis was performed to determine final weights. Agreement (Kappa) was measured between results from the final tool and from an Impact Survey (IS) conducted after beginning drug therapy to quantify a patient's actual ability to pay in terms of number of drug cycles per year. The authors present the step-by-step methodology employed to develop the tool on a country-by-country basis. Overall Cronbach value was 0.84. Agreement between the Patient Financial Eligibility Tool (PFET) and IS was perfect (equal number of drug cycles) for 58.1% of patients, fair (1 cycle difference) for 29.1%, and poor (>1 cycle) for 12.8%. Overall Kappa was 0.76 (P<0.0001). The PFET is an effective tool for determining an individual's ability to pay for medication. Combined with tiered models for patient participation in the cost of medication, it could help to increase access to high-priced products in developing countries.
    Matched MeSH terms: Pharmaceutical Preparations/economics
  14. Alrimawi BH, Chan MY, Ooi XY, Chan SY, Goh CF
    Polymers (Basel), 2021 Feb 15;13(4).
    PMID: 33671895 DOI: 10.3390/polym13040578
    Rice starch is a promising biomaterial for thin film development in buccal drug delivery, but the plasticisation and antiplasticisation phenomena from both plasticisers and drugs on the performance of rice starch films are not well understood. This study aims to elucidate the competing effects of sorbitol (plasticiser) and drug (antiplasticiser) on the physicochemical characteristics of rice starch films containing low paracetamol content. Rice starch films were prepared with different sorbitol (10, 20 and 30% w/w) and paracetamol contents (0, 1 and 2% w/w) using the film casting method and were characterised especially for drug release, swelling and mechanical properties. Sorbitol showed a typical plasticising effect on the control rice starch films by increasing film flexibility and by reducing swelling behaviour. The presence of drugs, however, modified both the mechanical and swelling properties by exerting an antiplasticisation effect. This antiplasticisation action was found to be significant at a low sorbitol level or a high drug content. FTIR investigations supported the antiplasticisation action of paracetamol through the disturbance of sorbitol-starch interactions. Despite this difference, an immediate drug release was generally obtained. This study highlights the interplay between plasticiser and drug in influencing the mechanical and swelling characteristics of rice starch films at varying concentrations.
    Matched MeSH terms: Pharmaceutical Preparations
  15. Ebadi M, Bullo S, Buskaran K, Hussein MZ, Fakurazi S, Pastorin G
    Polymers (Basel), 2021 Mar 10;13(6).
    PMID: 33802205 DOI: 10.3390/polym13060855
    Iron oxide nanoparticles are suitable for biomedical applications owing to their ability to anchor to various active agents and drugs, unique magnetic properties, nontoxicity, and biocompatibility. In this work, the physico-chemical and magnetic properties, as well as the cytotoxicity, of Fe3O4 nanoparticles coated with a polymeric carrier and loaded with a 5-fluorouracil (5-FU) anti-cancer drug are discussed. The synthesized Fe3O4 nanoparticles were coated with polyvinyl alcohol and Zn/Al-layered double hydroxide as the drug host. The XRD, DTA/TG, and FTIR analyzes confirmed the presence of the coating layer on the surface of nanoparticles. The results showed a decrease in saturation magnetization of bare Fe3O4 nanoparticles after coating with the PVA/5FU/Zn/Al-LDH layer. In addition, the presence of the coating prevented the agglomeration of nanoparticles. Furthermore, the pseudo-second-order equation governed the kinetics of drug release. Finally, the coated nanoparticles showed stronger activity against liver cancer cells (HepG2) compared to that of the naked 5-FU drug, and displayed no cytotoxicity towards 3T3 fibroblast cell lines. The results of the present study demonstrate the potential of a nano delivery system for cancer treatment.
    Matched MeSH terms: Pharmaceutical Preparations
  16. Mat Yusuf SNA, Ng YM, Ayub AD, Ngalim SH, Lim V
    Polymers (Basel), 2017 Jul 27;9(8).
    PMID: 30970988 DOI: 10.3390/polym9080311
    Discovery and use of biocompatible polymers offers great promise in the pharmaceutical field, particularly in drug delivery systems. Disulphide bonds, which commonly occur in peptides and proteins and have been used as drug-glutathione conjugates, are reductively cleaved in the colon. The intrinsic stability of a disulphide relative to thiol groups is determined by the redox potential of the environment. The objective of this study was to synthesise a trimesic acid-based disulphide cross-linked polymer that could potentially be used for targeted delivery to the colon. The monomer was synthesised by an amide coupling reaction between trimesic acid and (triphenylmethyl) thioethylamine using a two-step synthesis method. The s-trityl group was removed using a cocktail of trifluoroacetic acid and triethylsilane to expose the thiols in preparation for further polymerisation. The resulting polymers (P10, P15, P21, P25, and P51, generated using different molar ratios) were reduced after 1.5 h of reduction time. Scanning electron microscopy images of the polymers showed spherical, loose, or tight patterns depending on the molar ratio of polymerisation. These polymers also exhibited efficient dissolution under various gastrointestinal conditions. Of the five polymers tested, P10 and P15 appeared to be promising drug delivery vehicles for poorly soluble drugs, due to the hydrophobic nature of the polymers.
    Matched MeSH terms: Pharmaceutical Preparations
  17. Ghosh S, Lahiri D, Nag M, Dey A, Sarkar T, Pathak SK, et al.
    Polymers (Basel), 2021 Apr 12;13(8).
    PMID: 33921239 DOI: 10.3390/polym13081242
    Bacteria are considered as the major cell factories, which can effectively convert nitrogen and carbon sources to a wide variety of extracellular and intracellular biopolymers like polyamides, polysaccharides, polyphosphates, polyesters, proteinaceous compounds, and extracellular DNA. Bacterial biopolymers find applications in pathogenicity, and their diverse materialistic and chemical properties make them suitable to be used in medicinal industries. When these biopolymer compounds are obtained from pathogenic bacteria, they serve as important virulence factors, but when they are produced by non-pathogenic bacteria, they act as food components or biomaterials. There have been interdisciplinary studies going on to focus on the molecular mechanism of synthesis of bacterial biopolymers and identification of new targets for antimicrobial drugs, utilizing synthetic biology for designing and production of innovative biomaterials. This review sheds light on the mechanism of synthesis of bacterial biopolymers and its necessary modifications to be used as cell based micro-factories for the production of tailor-made biomaterials for high-end applications and their role in pathogenesis.
    Matched MeSH terms: Pharmaceutical Preparations
  18. Malviya R, Tyagi A, Fuloria S, Subramaniyan V, Sathasivam K, Sundram S, et al.
    Polymers (Basel), 2021 May 10;13(9).
    PMID: 34068768 DOI: 10.3390/polym13091531
    Transdermal drug delivery is used to deliver a drug by eliminating the first-pass metabolism, which increases the bioavailability of the drug. The present study aims to formulate the chitosan-tamarind seed polysaccharide composite films and evaluate for the delivery of protein/peptide molecules. Nine formulations were prepared and evaluated by using different parameters, such as physical appearance, folding endurance, thickness of film, surface pH, weight variation, drug content, surface morphology, percentage moisture intake and uptake, drug release kinetics, and drug permeability. The film weight variance was observed between 0.34 ± 0.002 to 0.47 ± 0.003 g. The drug level of the prepared films was found to be between 96 ± 1.21 and 98 ± 1.33μg. Their intake of moisture ranged between 2.83 ± 0.002 and 3.76 ± 0.001 (%). The moisture absorption of the films ranged from 5.33 ± 0.22 to 10.02 ± 0.61 (%). SEM images revealed a smooth film surface, while minor cracks were found in the film after permeation tests. During the first 4 days, drug release was between 13.75 ± 1.64% and 22.54 ± 1.34% and from day 5 to day 6, it was between 72.67 ± 2.13% and 78.33 ± 3.13%. Drug permeation during the first 4 days was 15.78 ± 1.23 %. Drug permeation (%) during the first 4 days was between 15.78 ± 1.23 and 22.49 ± 1.29 and from day 5 to day 6, it was between 71.49 ± 3.21 and 77.93 ± 3.20.
    Matched MeSH terms: Pharmaceutical Preparations
  19. Vakili M, Amouzgar P, Cagnetta G, Wang B, Guo X, Mojiri A, et al.
    Polymers (Basel), 2019 Oct 16;11(10).
    PMID: 31623271 DOI: 10.3390/polym11101701
    A composite chitosan/nano-activated carbon (CS-NAC) aminated by (3-aminopropyl)triethoxysilane (APTES) was prepared in the form of beads and applied for the removal of acetaminophen from aqueous solutions. NAC and APTES concentrations were optimized to obtain a suitable adsorbent structure for enhanced removal of the pharmaceutical. The aminated adsorbent (CS-NAC-APTES beads) prepared with 40% w/w NAC and 2% v/v APTES showed higher adsorption capacity (407.83 mg/g) than CS-NAC beads (278.4 mg/g). Brunauer-Emmett-Teller (BET) analysis demonstrated that the surface area of the CS-NAC-APTES beads was larger than that of CS-NAC beads (1.16 times). The adsorption process was well fitted by the Freundlich model (R2 > 0.95), suggesting a multilayer adsorption. The kinetic study also substantiated that the pseudo-second-order model (R2 > 0.98) was in better agreement with the experimental data. Finally, it was proved that the prepared beads can be recycled (by washing with NaOH solution) at least 5 times before detectable performance loss.
    Matched MeSH terms: Pharmaceutical Preparations
  20. Mohan D, Khairullah NF, How YP, Sajab MS, Kaco H
    Polymers (Basel), 2020 Apr 23;12(4).
    PMID: 32340327 DOI: 10.3390/polym12040986
    Drug delivery constitutes the formulations, technologies, and systems for the transport of pharmaceutical compounds to specific areas in the body to exert safe therapeutic effects. The main criteria for selecting the correct medium for drug delivery are the quantity of the drug being carried and the amount of time required to release the drug. Hence, this research aimed to improve the aforementioned criteria by synthesizing a medium based on calcium carbonate-nanocellulose composite and evaluating its efficiency as a medium for drug delivery. Specifically, the efficiency was assessed in terms of the rates of uptake and release of 5-fluorouracil. Through the evaluation of the morphological and chemical properties of the synthesized composite, the established 3D printing profiles of nanocellulose and CaCO3 took place following the layer-by-layer films. The 3D printed double laminated CaCO3-nanocellulose managed to release the 5-fluorouracil as an effective single composition and in a time-controlled manner.
    Matched MeSH terms: Pharmaceutical Preparations
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links