Displaying publications 61 - 80 of 1819 in total

Abstract:
Sort:
  1. Kropachev II, Vassilieva AB, Orlov NL, Rybaltovsky EM, Nguyen TT
    Zootaxa, 2021 Sep 14;5039(1):144-148.
    PMID: 34811091 DOI: 10.11646/zootaxa.5039.1.9
    To date, 20 species of Kurixalus Ye, Fei, and Dubois have been described, and all of these species are distributed throughout South and Southeast Asia, from eastern India, throughout Myanmar and the mountainous regions of southern China, to Indochina, western and northern peninsular Thailand, Malaysia, Sumatra, Borneo, and the Philippines (Frost 2021). Descriptions of the tadpoles of only 6 species have been published: K. berylliniris and K. wangi Wu, Huang, Tsai, Li, Jhang, Wu (Wu et al. 2016); K. eiffingeri (Boettger) (Kuramoto Wang 1987); K. idiootocus (Kuramoto Wang) (Kuramoto Wang 1987); K. cf. verrucosus (Boulenger) (Ziegler Vences 2002), and Kurixalus yangi Yu, Hui, Rao, Yang (Humtsoe et al. 2020). A description of the tadpoles of K. baliogaster (Inger, Orlov, Darevsky) is also given in the species description (Inger et al. 1999), but described larvae are assigned tentatively to this species in the published text. Additional studies on the identification of the conspecificity of the described tadpoles with K. baliogaster have not been conducted. Based on the much larger size of the tadpole body (TL up to 40.3 mm), as well as the labial tooth row formula 6(26)/5(1) given by Inger et al. (1999), we concluded that these described tadpoles cannot be larval K. baliogaster and most likely belong to some other species of rhacophorid frogs.
    Matched MeSH terms: Phylogeny
  2. Zhao JX, Wang LY, Irfan M, Zhang ZS
    Zootaxa, 2021 Aug 13;5020(3):457-488.
    PMID: 34810991 DOI: 10.11646/zootaxa.5020.3.3
    The cribellate, Asian endemic, spider genus, Taira is further studied, and six new species are recognized and described from China and Eastern Malaysia (Borneo): Taira borneoensis sp. nov. (♀), Taira gyaisiensis sp. nov. (♀), Taira nyagqukaensis sp. nov. (♀), Taira wanzhouensis sp. nov. (♂♀), Taira xuanenensis sp. nov. (♂) and Taira yangi sp. nov. (♂♀). Males of Taira latilabiata Zhang, Zhu Song, 2008 and Taira obtusa Zhang, Zhu Song, 2008 are also described for the first time. Drawings of the copulatory organs of the six new species, and comparative photos of the habitus and copulatory organs of all described species are provided, except for the male palp of the type species, T. flavidorsalis (Yaginuma, 1964). New records of known species and distribution maps are presented.
    Matched MeSH terms: Phylogeny*
  3. Davis HR, Grismer LL, Klabacka RL, Muin MA, Quah ES, Anuar S, et al.
    Zootaxa, 2016 Apr 12;4103(2):137-53.
    PMID: 27394624 DOI: 10.11646/zootaxa.4103.2.4
    Twelve species of Ansonia occur on the Thai-Malay peninsula, of which, five from Peninsular Malaysia, form a monophyletic group. One of these, A. jeetsukumarani, is endemic to the Titiwangsa Mountain Range, in which, we discovered a new population of Ansonia that is not A. jeetsukumarani or even its closest relative. Based on morphology, color pattern, and molecular phylogenetic analyses using the mitochondrial genes 12s and 16s rRNA, we have determined that this new species, A. smeagol sp. nov., forms the sister lineage to an upland, monophyletic group composed of A. jeetsukumarani, A. lumut, A. malayana, and A. penangensis. We have noted similar biogeographic patterns in other taxa from the Titiwangsa Mountain Range in a number of upland lineages in Peninsular Malaysia. We hypothesize that the phylogeographic structure of these upland populations is a result of stochastic processes stemming from interaction of climate-driven forest dynamics and life histories.
    Matched MeSH terms: Phylogeny*
  4. Grismer LL, Wood PL, Aowphol A, Cota M, Murdoch ML, Aguilar C, et al.
    Zootaxa, 2016 Mar 16;4092(3):414-20.
    PMID: 27394463 DOI: 10.11646/zootaxa.4092.3.6
    An integrative taxonomic analysis used to identify a new population of Bronchocela from Phuket Island, Thailand indicates it is conspecific with B. rayaensis from the Langkawi Archipelago of northwestern Peninsular Malaysia. An additional specimen photographed from Khura Buri District, Phang-nga Province is also considered to be B. rayaensis and represents a northern range extension of 295 km from the Langkawi Archipelago.
    Matched MeSH terms: Phylogeny*
  5. Grismer LL, Muin MA, Wood PL, Anuar S, Linkem CW
    Zootaxa, 2016 Mar 15;4092(2):231-42.
    PMID: 27394452 DOI: 10.11646/zootaxa.4092.2.6
    Phylogenetic analyses based on the mitochondrial gene ND2 and its flanking tRNAs indicate the diminutive upland and insular species Sphenomorphus bukitensis, S. butleri, S. langkawiensis, S. perhentianensis, and S. temengorensis form a monophyletic group that is phylogenetically embedded within the Southeast Asian genus Tytthoscincus. The analyses also indicate that a new swamp-dwelling skink from the Bukit Panchor State Park, Pulau Pinang, Peninsular Malaysia is the sister species to the swamp-dwelling species S. sibuensis from Pulau Sibu, Johor and Singapore and that these two are also embedded in the genus Tytthoscincus. By transferring the two Peninsular Malaysian clades of Sphenomorphus into the genus Tytthoscincus, the monophyly of the latter is maintained. The new species T. panchorensis sp. nov. can be distinguished from all other species of Tytthoscincus by having a unique combination of morphological and color pattern characteristics.
    Matched MeSH terms: Phylogeny*
  6. Cobos A, Grismer LL, Wood PL, Quah ES, Anuar S, Muin MA
    Zootaxa, 2016 May 03;4107(3):367-80.
    PMID: 27394826 DOI: 10.11646/zootaxa.4107.3.5
    An integrative taxonomic analysis based on the mitochondrial gene ND2 and its flanking tRNAs, morphology, and color pattern indicates that a newly discovered gecko described herein as Hemiphyllodactylus cicak sp. nov. from Penang Hill on the Island of Penang, Peninsular Malaysia is a member of the H. harterti group. Hemiphyllodactylus cicak sp. nov. is most closely related to the clade composed of the sister species H. harterti from Bukit Larut, Perak in the Bintang Mountain Range and H. bintik from Gunung Tebu, Terengganu from the Timur Mountain Range. These three allopatric species form a monophyletic group that extends approximately 270 km across three isolated mountain ranges in northern Peninsular Malaysia. The molecular analysis also indicates that H. titiwangsaensis from the Titiwangsa Mountain Range is composed of three genetically distinct allopatric populations. The southern two populations from Fraser's Hill and Genting Highlands, Pahang have an uncorrected pairwise sequence divergence of 3.5% whereas these two populations have 12.4 and 12.8 % sequence divergences, respectively, from the northern population at Cameron Highlands, Pahang. Although the high sequence divergence clearly distinguishes the southern two populations from the former as a different species, all three populations are morphologically indistinguishable, leading to the hypothesis of a true, cryptic speciation event.
    Matched MeSH terms: Phylogeny
  7. Grismer LL, Wood PL, Anuar S, Grismer MS, Quah ES, Murdoch ML, et al.
    Zootaxa, 2016 Apr 25;4105(5):401-29.
    PMID: 27394789 DOI: 10.11646/zootaxa.4105.5.1
    A new species of limestone cave-adapted gecko of the Cyrtodactylus pulchellus complex, C. hidupselamanya sp. nov., is described from an isolated karst formation at Felda Chiku 7, Kelantan, Peninsular Malaysia. This formation is scheduled to be completely quarried for its mineral content. From what we know about the life history of C. hidupselamanya sp. nov., this will result in its extinction. A new limestone forest-adapted species, C. lenggongensis sp. nov., from the Lenggong Valley, Perak was previously considered to be conspecific with C. bintangrendah but a re-evaluation of morphological, color pattern, molecular, and habitat preference indicates that it too is a unique lineage worthy of specific recognition. Fortunately C. lenggongensis sp. nov. is not facing extinction because its habitat is protected by the UNESCO Archaeological Heritage of the Lenggong Valley due to the archaeological significance of that region. Both new species can be distinguished from all other species of Cyrtodactylus based on molecular evidence from the mitochondrial gene ND2 and its flanking tRNAs as well as having unique combinations of morphological and color pattern characteristics. Using a time-calibrated BEAST analysis we inferred that the evolution of a limestone habitat preference and its apparently attendant morphological and color pattern adaptations evolved independently at least four times in the C. pulchellus complex between 26.1 and 0.78 mya.
    Matched MeSH terms: Phylogeny
  8. Cabra-García J, Brescovit AD
    Zootaxa, 2016 Jan 27;4069(1):1-183.
    PMID: 27395905 DOI: 10.11646/zootaxa.4069.1.1
    A taxonomic revision and phylogenetic analysis of the spider genus Glenognatha Simon, 1887 is presented. This analysis is based on a data set including 24 Glenognatha species plus eight outgroups representing three related tetragnathine genera and one metaine as the root. These taxa were scored for 78 morphological characters. Parsimony was used as the optimality criterion and a sensitivity analysis was performed using different character weighting concavities. Seven unambiguous synapomorphies support the monophyly of Glenognatha. Some internal clades within the genus are well-supported and its relationships are discussed. Glenognatha as recovered includes 27 species, four of them only known from males. A species identification key and distribution maps are provided for all. New morphological data are also presented for thirteen previously described species. Glenognatha has a broad distribution occupying the Neartic, Afrotropic, Indo-Malaya, Oceania and Paleartic regions, but is more diverse in the Neotropics. The following eleven new species are described: G. vivianae n. sp., G. caaguara n. sp., G. boraceia n. sp. and G. timbira n. sp. from southeast Brazil, G. caparu n. sp., G. januari n. sp. and G. camisea n. sp. from the Amazonian region, G. mendezi n. sp., G. florezi n. sp. and G. patriceae n. sp. from northern Andes and G. gouldi n. sp. from Southern United States and central Mexico. Females of G. minuta Banks, 1898, G. gaujoni Simon, 1895 and G. gloriae (Petrunkevitch, 1930) and males of G. globosa (Petrunkevitch, 1925) and G. hirsutissima (Berland, 1935) are described for the first time. Three new combinations are proposed in congruence with the phylogenetic results: G. argyrostilba (O. P.-Cambridge, 1876) n. comb., G. dentata (Zhu & Wen, 1978) n. comb. and G. tangi (Zhu, Song & Zhang, 2003) n. comb., all previously included in Dyschiriognatha Simon, 1893. The following taxa are newly synonymized: Dyschiriognatha montana Simon, 1897, Glenognatha mira Bryant, 1945 and Glenognatha maelfaiti Baert, 1987 with Glenognatha argyrostilba (Pickard-Cambridge, 1876) and Glenognatha centralis Chamberlin, 1925 with Glenognatha minuta Banks, 1898.
    Matched MeSH terms: Phylogeny*
  9. Karin BR, Das I, Bauer AM
    Zootaxa, 2016 Mar 22;4093(3):407-23.
    PMID: 27394504 DOI: 10.11646/zootaxa.4093.3.7
    We describe two new species of skinks from Gunung Penrissen, Sarawak, Malaysia, in northern Borneo, Tytthoscincus batupanggah sp. nov. and T. leproauricularis sp. nov. Morphological and molecular analyses both corroborate the two new species as unique compared to all other Tytthoscincus and additional Sphenomorphus that are candidates for taxonomic placement in the genus Tytthoscincus. Despite their phenotypic similarity and sympatric distribution, a molecular analysis shows that the new species are not sister taxa and exhibit a deep genetic divergence between each of their respective sister taxa. We discuss how historical climatic and geographic processes may have led to the co-distribution of two relatively distantly related phenotypically similar species. In light of these discoveries, we also emphasize the importance of conserving primary montane tropical rainforest for maintaining species diversity.
    Matched MeSH terms: Phylogeny
  10. Abramov AV, Bannikova AA, Lebedev VS, Rozhnov VV
    Zootaxa, 2017 Feb 15;4232(2):zootaxa.4232.2.5.
    PMID: 28264392 DOI: 10.11646/zootaxa.4232.2.5
    We analyzed the complete mitochondrial cytochrome b (cytb) gene and fragments of four nuclear loci: ApoB, RAG2, IRBP1 and BRCA1. These data allowed us to provide new insights into the diversity of the Asiatic water shrews of Indochina. A new, highly divergent genetic lineage of Chimarrogale was found in southern Vietnam, and this lineage included specimens from the provinces of Kon Tum, Dak Lak, and Lam Dong. Such finding represents the newest and southernmost records of Chimarrogale in Indochina. Morphological analysis classified the specimens from southern Vietnam as C. varennei proper, which is restricted to that region, whereas the polymorphic C. himalayica, which contained at least four cytochrome b haplogroups, occurred in central and northern Vietnam and southern China. This distinct C. varennei lineage closely related to the C. platycephalus + C. leander clade suggests the existence of an unknown glacial refuge in Tay Nguyen Plateau, southern Vietnam. Because the Bornean C. phaeura (i) was sister-group of the rest of Chimarrogale sensu lato and (ii) had a high genetic divergence (~15% for cytochrome b) and geographical isolation, we suggest that C. phaeura be placed into a separate genus, Crossogale Thomas, 1921. This genus should also include C. sumatrana (Sumatra) and C. hantu (Peninsular Malaysia). On those grounds, we propose a new classification system for Asiatic water shrews.
    Matched MeSH terms: Phylogeny
  11. Sumarli A, Grismer LL, Wood PL, Ahmad AB, Rizal S, Ismail LH, et al.
    Zootaxa, 2016 Oct 02;4173(1):29-44.
    PMID: 27701201 DOI: 10.11646/zootaxa.4173.1.3
    Recently discovered populations of skinks of the genus Sphenomorphus from central Peninsular Malaysia represent a new species, S. sungaicolus sp. nov., and the first riparian skink known from Peninsular Malaysia. Morphological analyses of an earlier specimen reported as S. tersus from the Forest Research Institute of Malaysia (FRIM), Selangor indicate that it too is the new riparian species S. sungaicolus sp. nov. Additionally, two specimens from the Tembat Forest Reserve, Hulu Terengganu, Kelantan and another from Ulu Gombak, Selangor have been diagnosed as new the species. The latter specimen remained unidentified in the Bernice Pauahi Bishop Museum, Honolulu, Hawaii since its collection in June 1962. Morphological and molecular analyses demonstrate that S. sungaicolus sp. nov. forms a clade with the Indochinese species S. maculatus, S. indicus, and S. tersus and is the sister species of the latter. Sphenomorphus sungaicolus sp. nov. can be differentiated from all other members of this clade by having a smaller SVL (66.5-89.6 mm); 39-44 midbody scale rows; 72-81 paravertebral scales; 74-86 ventral scales; a primitive plantar scale arrangement; and 20-22 scale rows around the tail at the position of the 10th subcaudal.
    Matched MeSH terms: Phylogeny
  12. Rheindt FE, Christidis L, Norman JA, Eaton JA, Sadanandan KR, Schodde R
    Zootaxa, 2017 Apr 07;4250(5):401-433.
    PMID: 28609999 DOI: 10.11646/zootaxa.4250.5.1
    White-bellied swiftlets of the Collocalia esculenta complex constitute a radiation of colony-breeding swifts distributed throughout the tropical Indo-Pacific region. Resolution of their taxonomy is challenging due to their morphological uniformity. To analyze the evolutionary history of this complex, we combine new biometric measurements and results from plumage assessment of museum specimens with novel as well as previously published molecular data. Together, this body of information constitutes the largest systematic dataset for white-bellied swiftlets yet compiled, drawn from 809 individuals belonging to 32 taxa for which new molecular, biometric, and/or plumage data are presented. We propose changing the classification of white-bellied swiftlets, for which two species are currently recognized, to elevate eight regional forms to species level, and we also describe two new subspecies. The ten taxa we recommend recognizing at the species level are: Collocalia linchi (Java to Lombok, Sumatran hills), C. dodgei (montane Borneo), C. natalis (Christmas Island), C. affinis (Greater Sundas, including the Thai-Malay Peninsula and Andaman-Nicobar Islands), C. marginata (Philippines), C. isonota (Philippines), C. sumbawae (west Lesser Sundas), C. neglecta (east Lesser Sundas), C. esculenta (Sulawesi, Moluccas, New Guinea, Bismarck Archipelago, Solomon Islands), and C. uropygialis (Vanuatu, New Caledonia). Future molecular and morphological work is needed to resolve questions of speciation and population affinities in the Philippines, Christmas Island, Wallacea and central Melanesia, and to shed light on historic diversification and patterns of gene flow in the complex.
    Matched MeSH terms: Phylogeny*
  13. Quah ESH, Grismer LL, Wood PLJ, Thura MK, Zin T, Kyaw H, et al.
    Zootaxa, 2017 Mar 06;4238(4):571-582.
    PMID: 28603251 DOI: 10.11646/zootaxa.4238.4.5
    A newly discovered species of homalopsid snake from the genus Gyiophis Murphy & Voris is described from the lowlands of Mawlamyine District in Mon state, southeastern Myanmar. Gyiophis salweenensis sp. nov. is presumed to be closely related to G. maculosa Blanford and G. vorisi Murphy based on the similarities in pholidosis and patterning but can be separated from G. maculosa by the shape of its first three dorsal scale rows that are square, ventral scale pattern that lacks a central spot, and a faint stripe on dorsal scale rows 1-4. It can be further distinguished from G. vorisi by its lower number of ventral scales (129 vs. 142-152), lower number of subcaudals (30/29 vs. 41-58), narrow rostral scale, and having more rows of spots on the dorsum (four vs. three). A preliminary molecular analysis using 1050 base pairs of cytochrome b (cytb) recovered G. salweenensis sp. nov. as the sister species to the Chinese Mud Snake (Myrrophis chinensis). G. maculosa and G. vorisi were unavailable for the analysis. The discovery of G. salweenensis sp. nov. highlights the need for more surveys into the herpetological diversity of eastern Myanmar which remains very much underestimated.
    Matched MeSH terms: Phylogeny
  14. Nguyen TQ, Pham AV, Ziegler T, Ngo HT, LE MD
    Zootaxa, 2017 Oct 30;4341(1):25-40.
    PMID: 29245698 DOI: 10.11646/zootaxa.4341.1.2
    We describe a new species of Cyrtodactylus on the basis of four specimens collected from the limestone karst forest of Phu Yen District, Son La Province, Vietnam. Cyrtodactylus sonlaensis sp. nov. is distinguished from the remaining Indochinese bent-toed geckos by a combination of the following characters: maximum SVL of 83.2 mm; dorsal tubercles in 13-15 irregular rows; ventral scales in 34-42 rows; ventrolateral folds prominent without interspersed tubercles; enlarged femoral scales 15-17 on each thigh; femoral pores 14-15 on each thigh in males, absent in females; precloacal pores 8, in a continuous row in males, absent in females; postcloacal tubercles 2 or 3; lamellae under toe IV 18-21; dorsal head with dark brown markings, in oval and arched shapes; nuchal loop discontinuous; dorsum with five brown bands between limb insertions, third and fourth bands discontinuous; subcaudal scales distinctly enlarged. In phylogenetic analyses, the new species is nested in a clade consisting of C. huongsonensis and C. soni from northern Vietnam and C. cf. pulchellus from Malaysia based on maximum likelihood and Bayesian analyses. In addition, we record Cyrtodactylus otai Nguyen, Le, Pham, Ngo, Hoang, Pham & Ziegler for the first time from Son La Province based on specimens collected from Van Ho District.
    Matched MeSH terms: Phylogeny
  15. Boyd DA, Nithirojpakdee P, Deein G, Vidthayanon C, Grudpan C, Tangjitjaroen W, et al.
    Zootaxa, 2017 Oct 31;4341(2):151-192.
    PMID: 29245684 DOI: 10.11646/zootaxa.4341.2.1
    Acantopsis (Cobitidae) is revised based on analysis of morphological and molecular data. Four of the six available names, A. dialuzona, A. spectabilis, A. octoactinotos, and A. thiemmedhi, are valid, and three new species, A. rungthipae, A. dinema, and A. ioa, are described. All species are described morphologically, distributions are mapped, and relationships are discussed for those for which molecular data (CO1, RAG1) are available. Labial barbels, color pattern, and meristic counts are the most diagnostic features. Although the long snout of Acantopsis is perhaps the most emblematic attribute of the genus, its relative length increases with growth, reducing its taxonomic value. Species can be difficult to identify on the basis of color pattern alone, as habitat and preservation methods appear to strongly influence the color pattern. Despite interspecific overlap of some highly variable traits, each species has a unique set of morphological characteristics that remain observable even when the color pattern is obscured, and some species are restricted to single drainages, greatly simplifying identification. The phylogenetic analyses revealed high molecular divergence between even the most morphologically similar species, with mean uncorrected CO1 p-distances between species ranging from 12.1-15.4%. Species of Acantopsis exhibit significant genetic structuring consistent with recognized freshwater ecoregions. Acanthopsis lachnostoma Rutter 1897, from Swatow, China, is not assignable to Acantopsis.
    Matched MeSH terms: Phylogeny
  16. Watts CHS, Cooper SJB, Saint KM
    Zootaxa, 2017 Nov 14;4347(3):511-532.
    PMID: 29245582 DOI: 10.11646/zootaxa.4347.3.5
    The phylogenetic relationships of 26 Australian species of Scirtes Illiger, Ora Clark and Exochomoscirtes Pic (Scirtidae) were investigated using adult morphology, particularly male and female genitalia, larval morphology and molecular data from the mitochondrial cytochrome c oxidase subunit I (COI) gene and the nuclear genes elongation factor 1-alpha (EF1- a) and topoisomerase I (TOP1). Four species of Scirtes and one of Ora from Europe, Southeast Asia and Japan were included. The genus Scirtes is shown to be paraphyletic with respect to the genera Ora and Exochomoscirtes. Australian Scirtes were shown to belong to four species groups: Scirtes elegans group (Yoshitomi 2009); S. helmsi group (Watts 2004); S. japonicus group (Nyholm 2002); and S. haemisphaericus group (Yoshitomi 2005). The prehensor and bursal sclerite of 15 species are illustrated as well as habitus illustrations of S. zwicki sp. nov. and S. albamaculatus Watts. Three new species from Australia are described: Scirtes lynnae, S. zwicki and S. serratus spp. nov. Scirtes nehouensis Ruta & Yoshitomi 2010 is synonymised with S. emmaae Watts 2004. Scirtes pygmaeus Watts, 2004 is synonymised with S. pinjarraensis Watts, 2006. Scirtes rutai nom. nov. is proposed as a replacement name for S. beccus Ruta, Kiałka & Yoshitomi, 2014 from Sabah as it is preoccupied by S. beccus Watts, 2004 from Australia.
    Matched MeSH terms: Phylogeny
  17. Dow RA, Stokvis F, Ngiam RWJ
    Zootaxa, 2017 Nov 29;4358(2):201-257.
    PMID: 29245467 DOI: 10.11646/zootaxa.4358.2.1
    The Bornean members of the genus Leptogomphus Selys are revised. Two new species are described: Leptogomphus schieli sp. nov. (holotype ♂, Gunung Penrissen, Kuching Division, Sarawak, Malaysia, to be deposited in BMNH) and Leptogomphus sii sp. nov. (holotype ♂, Sungai Sii, upper Baram, Miri Division, Sarawak, Malaysia, in RMNH). Leptogomphus mariae Lieftinck, 1948 is considered to be a junior synonym of L. coomansi Laidlaw, 1936. The true male of L. pasia van Tol, 1990 is described for the first time; male specimens previously treated as L. pasia or L. cf pasia actually belong to a taxon closely allied to, and possibly merely a form of, L. coomansi. A description is given of the female of another new species, but the species is not named in the absence of the male. Female specimens from south-western Sarawak, similar to L. williamsoni Laidlaw, 1912, are considered likely to also represent a distinct species. The female of L. pendleburyi Laidlaw, 1934 is described for the first time and fresh descriptions of the males of L. coomansi, L. pendleburyi and L. williamsoni, and the female of L. coomansi are given. Keys to both sexes, and distribution maps are given. A molecular analysis of the Bornean species (except L. schieli) using the COI and ITS markers is presented.
    Matched MeSH terms: Phylogeny
  18. Smith SM, Beaver RA, Pham TH, Cognato AI
    Zootaxa, 2022 Nov 15;5209(1):1-33.
    PMID: 37045407 DOI: 10.11646/zootaxa.5209.1.1
    Eighteen xyleborine ambrosia beetles are described and illustrated: Anisandrus proscissus Smith, Beaver, Pham & Cognato sp. nov. (Vietnam), Anisandrus simplex Smith, Beaver & Cognato sp. nov. (Nepal), Arixyleborus belalongi Smith, Beaver & Cognato sp. nov. (Brunei Darussalam), Beaverium brevicaudatus Smith, Beaver & Cognato sp. nov. (Indonesia), Cnestus luculentus Smith, Beaver & Cognato sp. nov. (India), Cyclorhipidion achlys Smith, Beaver, Pham & Cognato sp. nov. (Vietnam), Cyclorhipidion conidentatus Smith, Beaver & Cognato sp. nov. (Indonesia), Cyclorhipidion gladigerum Smith, Beaver & Cognato sp. nov. (Thailand), Cyclorhipidion lapilliferum Smith, Beaver, Pham & Cognato sp. nov. (Vietnam), Cyclorhipidion nepalense Smith, Beaver & Cognato sp. nov. (Nepal), Cyclorhipidion taedulum Smith, Beaver, Pham & Cognato sp. nov. (Vietnam), Cyclorhipidion titorum Smith, Beaver, Pham & Cognato sp. nov. (Vietnam), Euwallacea alastos Smith, Beaver & Cognato sp. nov. (Japan), Leptoxyleborus regina Smith, Beaver & Cognato sp. nov. (Papua New Guinea), Tricosa hipparion Smith, Beaver & Cognato sp. nov. (Malaysia), Xyleborinus acanthopteron Smith, Beaver & Cognato sp. nov. (Thailand), Xyleborinus dumosus Smith, Beaver, Pham & Cognato sp. nov. (Vietnam), Xyleborinus nobuchii Smith, Beaver & Cognato sp. nov. (Japan). New distribution records are reported for 67 Asian species. Cyclorhipidion nemesis Smith & Cognato, described from U. S. A., is reported from Asia (China), its hypothesized native continent, for the first time. Its identity is confirmed with COI and CAD DNA within a phylogenetic analysis including other Cyclorhipidion species.
    Matched MeSH terms: Phylogeny
  19. Cao HX, Dale-Skey N, Burwell CJ, Zhu CD
    Zootaxa, 2022 Sep 30;5190(4):451-484.
    PMID: 37045360 DOI: 10.11646/zootaxa.5190.4.1
    This study is dedicated to the late Dr. John LaSalle, and reviews the world species of Pleurotroppopsis Girault (Hymenoptera: Eulophidae); fourteen species are treated, of which two are newly described: P. dactylispae Cao & Zhu sp. nov. from China and P. peukscutella Cao & Zhu sp. nov. from Malaysia. On the basis of morphological characters, tentative relationships among genera allied to Pleurotroppopsis are discussed. A revised definition of Pleurotroppopsis is presented based on study of type specimens of all species and a critical review of previous studies on the genus. In addition, parsimony analyses were conducted to infer a phylogeny of Pleurotroppopsis species based on a unique data matrix of morphological characters. Keys to genera allied to Pleurotroppopsis and to known species of Pleurotroppopsis are provided.
    Matched MeSH terms: Phylogeny
  20. Nozaki T
    Zootaxa, 2023 Apr 12;5264(1):64-76.
    PMID: 37044963 DOI: 10.11646/zootaxa.5264.1.4
    The rove beetle genus Andrikothelyna Pace, 2000 is reviewed. Speiraphallusa Pace, 2013 is synonymized with Andrikothelyna due to the morphological similarities. A revised diagnosis and redescription of the genus are presented, and three new species are described. As a result of this study, this genus consists of the following two known species and three new species: Andrikothelyna papuana Pace, 2000, from Papua New Guinea; Andrikothelyna orientis (Pace, 2013) comb. nov. from Malaysia; Andrikothelyna rubiginosa sp. nov. from Taiwan (Nantou); Andrikothelyna limbata sp. nov. from Japan (Honshu, Kyushu and Ryukyu); and Andrikothelyna naomichii sp. nov. from Japan (Ryukyu). This study reports the newly recorded presence of the genus Andrikothelyna in Taiwan and Japan. In addition, the key to the species is given and the taxonomic position of the genus is discussed. Observation of the living individuals reveals part of the biology of the new species.
    Matched MeSH terms: Phylogeny
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links