Displaying publications 61 - 80 of 1820 in total

Abstract:
Sort:
  1. Pyke AT, Williams DT, Nisbet DJ, van den Hurk AF, Taylor CT, Johansen CA, et al.
    Am J Trop Med Hyg, 2001 Dec;65(6):747-53.
    PMID: 11791969
    In mid-January 2000, the reappearance of Japanese encephalitis (JE) virus activity in the Australasian region was first demonstrated by the isolation of JE virus from 3 sentinel pigs on Badu Island in the Torres Strait. Further evidence of JE virus activity was revealed through the isolation of JE virus from Culex gelidus mosquitoes collected on Badu Island and the detection of specific JE virus neutralizing antibodies in 3 pigs from Saint Pauls community on Moa Island. Nucleotide sequencing and phylogenetic analyses of the premembrane and envelope genes were performed which showed that both the pig and mosquito JE virus isolates (TS00 and TS4152, respectively) clustered in genotype I, along with northern Thai, Cambodian, and Korean isolates. All previous Australasian JE virus isolates belong to genotype II, along with Malaysian and Indonesian isolates. Therefore, for the first time, the appearance and transmission of a second genotype of JE virus in the Australasian region has been demonstrated.
    Matched MeSH terms: Phylogeny
  2. Hall MJ, Edge W, Testa JM, Adams ZJ, Ready PD
    Med Vet Entomol, 2001 Dec;15(4):393-402.
    PMID: 11776458
    A morphological and molecular analysis was undertaken with the objective of identifying markers for geographical populations of Old World screwworm flies, Chrysomya bezziana Villeneuve (Diptera: Calliphoridae). The morphological analysis involved 192 adult flies from 14 countries, and the molecular analysis involved 45 larvae or adults from 14 populations in 11 countries. Principal components and cluster analysis of 10 morphological characters indicated that flies from Papua New Guinea (PNG) were a distinct group and most similar to flies from nearby Asian islands (Java, Sabah). There was poor resolution of other geographical regions, but some support for clustering of flies from Africa or India. Cladistic analysis of mitochondrial DNA sequences gave strong support for recognizing two races of Old World screwworm, one from sub-Saharan Africa and the other from the Gulf region and Asia. This latter race could be further divided into two lineages, i.e. one from mainland Asia (from Iraq to the Malay Peninsula) and the other from two islands of PNG.
    Matched MeSH terms: Phylogeny
  3. Chong LK, Omar AR, Yusoff K, Hair-Bejo M, Aini I
    Acta Virol., 2001;45(4):217-26.
    PMID: 11885928
    The complete nucleotide sequences encoding precursor polyprotein (VP2-VP3-VP4) and VP5 of a highly virulent (hv) infectious bursal disease virus (IBDV), UPM97/61 was determined. Comparison of the deduced amino acid sequences with the published ones revealed 8 common amino acid substitutions, which were found only in the hv IBDV including the UPM97/61 strain. Three of the amino acid substitutions (222 Ala, 256 Ile and 294 Ile) were used as a marker for determining hv IBDV strains. The other five substitutions (685 Asn, 715 Ser, 751 Asp, 990 Val and 1005 Ala) were also conserved in hv IBDV strains isolated in various countries. UPM97/61 strain demonstrated also 8 unique amino acid substitutions of which 3 were in VP2, 4 in VP3 and 1 in VP4. There was 1 unique amino acid substitution in VP5 at position 19 (Asp-->Gly) not found in other strains. However, all the strains have a conserved 49 Arg. The amino acid sequence of UPM97/61 strain differed by 1.09% from the Japanese (OKYM) and Hong Kong (HK46) strains, and by 1.48% from the Israeli (IBDVKS) and European (UK661) strains. Hence, UPM97/61 is more closely related to the hv strains from Asia. However, phylogenetic analysis indicated that the origin of UPM97/61 might be the same as that of other hv strains isolated from other parts of the world.
    Matched MeSH terms: Phylogeny
  4. Arai YT, Takahashi H, Kameoka Y, Shiino T, Wimalaratne O, Lodmell DL
    Acta Virol., 2001;45(5-6):327-33.
    PMID: 12083333
    Thirty-four suspected rabid brain samples from 2 humans, 24 dogs, 4 cats, 2 mongooses, I jackal and I water buffalo were collected in 1995-1996 in Sri Lanka. Total RNA was extracted directly from brain suspensions and examined using a one-step reverse transcription-polymerase chain reaction (RT-PCR) for the rabies virus nucleoprotein (N) gene. Twenty-eight samples were found positive for the virus N gene by RT-PCR and also for the virus antigens by fluorescent antibody (FA) test. Rabies virus isolates obtained from different animal species in different regions of Sri Lanka were genetically homogenous. Sequences of 203 nucleotides (nt)-long RT-PCR products obtained from 16 of 27 samples were found identical. Sequences of 1350 nt of N genes of 14 RT-PCR products were determined. The Sri Lanka isolates under study formed a specific cluster that included also an earlier isolate from India but did not include the known isolates from China, Thailand, Malaysia, Israel, Iran, Oman, Saudi Arabia, Russia, Nepal, Philippines, Japan and from several other countries. These results suggest that one type of rabies virus is circulating among human, dog, cat, mongoose, jackal and water buffalo living near Colombo City and in other five remote regions in Sri Lanka.
    Matched MeSH terms: Phylogeny
  5. Scherret JH, Poidinger M, Mackenzie JS, Broom AK, Deubel V, Lipkin WI, et al.
    Emerg Infect Dis, 2001 Jul-Aug;7(4):697-705.
    PMID: 11585535
    Until recently, West Nile (WN) and Kunjin (KUN) viruses were classified as distinct types in the Flavivirus genus. However, genetic and antigenic studies on isolates of these two viruses indicate that the relationship between them is more complex. To better define this relationship, we performed sequence analyses on 32 isolates of KUN virus and 28 isolates of WN virus from different geographic areas, including a WN isolate from the recent outbreak in New York. Sequence comparisons showed that the KUN virus isolates from Australia were tightly grouped but that the WN virus isolates exhibited substantial divergence and could be differentiated into four distinct groups. KUN virus isolates from Australia were antigenically homologous and distinct from the WN isolates and a Malaysian KUN virus. Our results suggest that KUN and WN viruses comprise a group of closely related viruses that can be differentiated into subgroups on the basis of genetic and antigenic analyses.
    Matched MeSH terms: Phylogeny
  6. Eshaghi M, Ali AM, Jamal F, Yusoff K
    J. Biochem. Mol. Biol. Biophys., 2002 Feb;6(1):23-8.
    PMID: 12186779
    Streptococcus pyogenes ST4547 is an opacity factor negative strain, which has been recently reported as a new emm type from Malaysia. Nucleotide sequencing of the mga regulon of this strain showed the existence of two emm-like genes. The emm gene located upstream of the scpA gene comprises 1305 nucleotides encoding the putative precursor M protein of 435 amino acids in length with an M(r) of 49 kDa. or a predicted mature protein of 394 amino acids with an M(r) of 44.8 kDa. Another gene mrpST4547 was located upstream of the emm gene and downstream of the mga gene. The sequence of this mrp gene comprises 1167 nucleotides encoding a predicted protein of 388 amino acids in length with an M(r) of 42.2 kDa. or a predicted mature protein of 347 amino acids with an M(r) of 37.9 kDa. The mga regulon of strain ST4547 has a mosaic structure comprising segments, which originated from different OF positive and OF negative strains. The sequences flanking the hyper-variable and C repeats of the emmST4547 gene showed high similarity to corresponding regions in the mga regulon of OF positive strains notably M15, M4, M22 and M50. In contrast, the sequence within the hyper-variable and C repeat regions of the emmST4547 gene revealed high similarity to equivalent regions in the OF negative strains. These data indicates that horizontal transfer of emm-like gene could have occurred between OF positive and OF negative strains resulting in architectural divergence in the mga regulon.
    Matched MeSH terms: Phylogeny
  7. Le TH, Blair D, McManus DP
    Ann Trop Med Parasitol, 2002 Mar;96(2):155-64.
    PMID: 12080976
    Recent electrophoretic data have indicated that Schistosoma japonicum in mainland China may be a species complex, with the existence of a cryptic species being predicted from the analysis of schistosome populations from Sichuan province. To investigate the Sichuan form of S. japonicum, 4.9 kbp of mitochondrial DNA from each of three samples of the parasite from China (two from Sichuan and one from Hunan) and one from Sorsogon in the Philippines were amplified, sequenced and characterized. The sequence data were compared with those from the related South-east Asian species of S. mekongi (Khong Island, Laos) and S. mlayensis (Baling, Malaysia) and that from S. japonicm from Anhui (China). At both the nucleotide and amino-acid levels, the variation among the five S. japonicum samples was limited (< 1%). This was consistent with the conclusions drawn from previous molecular studies, in which minimal variation among S. japonicum populations was also detected. In contrast, S. mekongi and S. malayensis, species recognized as separate but closely related, differ from each other by about 10%, and each differs by 25%-26% from S. japonicum. Phylogenetic trees provided a graphic representation of these differences, showing all S. japonicum sequences to be very tightly clustered and distant from S. mekongi and S. malayensis, the last two being clearly distinct from each other. The results thus indicate no significant intra-specific genetic variation among S. japonicum samples collected from different geographical areas and do not support the idea of a distinct form in Sichuan.
    Matched MeSH terms: Phylogeny
  8. Horn M, Fritsche TR, Linner T, Gautom RK, Harzenetter MD, Wagner M
    Int J Syst Evol Microbiol, 2002 Mar;52(Pt 2):599-605.
    PMID: 11931173 DOI: 10.1099/00207713-52-2-599
    All obligate bacterial endosymbionts of free-living amoebae currently described are affiliated with the alpha-Proteobacteria, the Chlamydiales or the phylum Cytophaga-Flavobacterium-Bacteroides. Here, six rod-shaped gram-negative obligate bacterial endosymbionts of clinical and environmental isolates of Acanthamoeba spp. from the USA and Malaysia are reported. Comparative 16S rDNA sequence analysis demonstrated that these endosymbionts form a novel, monophyletic lineage within the beta-Proteobacteria, showing less than 90% sequence similarity to all other recognized members of this subclass. 23S rDNA sequence analysis of two symbionts confirmed this affiliation and revealed the presence of uncommon putative intervening sequences of 146 bp within helix-25 that shared no sequence homology to any other bacterial rDNA. In addition, the 23S rRNA of these endosymbionts displayed one polymorphism at the target site of oligonucleotide probe BET42a that is conserved in all other sequenced beta-Proteobacteria. Intra-cytoplasmatic localization of the endosymbionts within the amoebal host cells was confirmed by electron microscopy and fluorescence in situ hybridization with a specific 16S rRNA-targeted oligonucleotide probe. Based on these findings, the provisional name 'Candidatus Procabacter acanthamoebae' is proposed for classification of a representative of the six endosymbionts of Acanthamoeba spp. studied in this report. Comparative 18S rDNA sequence analysis of the Acanthamoeba host cells revealed their membership with either Acanthamoeba 18S rDNA sequence type T5 (Acanthamoeba lenticulata) or sequence type T4, which comprises the majority of all Acanthamoeba isolates.
    Matched MeSH terms: Phylogeny
  9. Manguin S, Kengne P, Sonnier L, Harbach RE, Baimai V, Trung HD, et al.
    Med Vet Entomol, 2002 Mar;16(1):46-54.
    PMID: 11963981
    The Anopheles dirus Peyton & Harrison complex of mosquitoes (Diptera: Culicidae) comprises seven known species, including important malaria vectors in Southeast Asia. Specific identification of each species of the complex, which cannot be distinguished using morphological characters, is crucial for understanding vector ecology and implementing effective control measures. Derived from individual random amplified polymorphic DNA (RAPD) markers, sequence characterized amplified regions (SCAR) were analysed for the design of specific paired-primers. Combination of six SCAR primers resulted in the development of a simple, robust, single multiplex PCR able to identify three important malaria vectors among the four most common species (A, B, C, D) of the complex: species A from several Southeast Asian countries, species B from Perlis, Malaysia, and species C and D from Thailand.
    Matched MeSH terms: Phylogeny
  10. Hoque MM, Omar AR, Hair-Bejo M, Aini I
    J. Biochem. Mol. Biol. Biophys., 2002 Apr;6(2):93-9.
    PMID: 12186763
    Previously we have shown that very virulent infectious bursal disease viruses (vvIBDV) that are SspI, TaqI and StyI positive (92/04, 97/61 and 94/B551) but not SspI and TaqI positive and StyI negative (94/273) cause high mortality, up to 80% in specific-pathogen-free chickens with significant damage of the bursal as well as nonbursal tissues. In this study, we sequenced the VP2 gene (1351 bp) of the 92/04, 94/273 and 94/B551 and compared them with other IBDV strains. All the isolates have the unique amino acid residues at positions 222A, 256I, 294I and 299S found in other vvIBDV strains. The deduced VP2 amino acids encoded by 92/04 is identical to the vvIBDV strains from Israel (IBDVKS), Japan (OKYM) and Europe (UK661), whereas the 94/273 and 94/B551 isolates have one to three amino acid substitutions. The 94/273 has two amino acid substitutions at positions 254 G to S and at 270 A to E that have not been reported before from vvIBDV strains. The 94/B551 also has one amino acid substitution at position 300 E to S, which is uncommon among other vvIBDV strains. However, phylogenetic analysis suggested that the isolates are very close to each other and all of them may have derived from the same origin as vvIBDV strains isolated from China, Japan and Europe. Even though antigenic index analysis of the 94/273 and 94/B551 indicated that the isolates are unique compared to other IBDV strains, their antigenic variation remain to be determined by monoclonal antibody study.
    Matched MeSH terms: Phylogeny
  11. Teo CH, Tan SH, Othman YR, Schwarzacher T
    J. Biochem. Mol. Biol. Biophys., 2002 Jun;6(3):193-201.
    PMID: 12186754
    Ty1-copia-like retrotransposons have been identified and investigated in several plant species. Here, the internal region of the reverse transcriptase (RT) gene of Ty1-copia-like retrotransposons was amplified by PCR from total genomic DNA of 10 varieties of banana. Two to four clones from each variety were sequenced. Extreme heterogeneity in the sequences of Ty1-copia-like retrotransposons from all the varieties was revealed following sequence analysis of the reverse transcriptase (RT) fragments. The size of the individual RT gene fragments varied between 213 and 309 bp. Southern blots of genomic DNA digested from Musa acuminata and other banana varieties probed with W8 clone from M. acuminata and A4 clone from Pisang Abu Nipah showed similar strong, multiple restriction fragments together with other faint hybridization band patterns with variable intensities indicating the presence of many copies of the Ty1-copia-like retrotransposons in the genomes. There was no correlation between retroelement sequence and the banana species (with A or B genomes) from which it arose, suggesting that the probes are not useful for tracking genomes through breeding populations.
    Matched MeSH terms: Phylogeny
  12. Kamiya K, Harada K, Clyde MM, Mohamed AL
    Genes Genet Syst, 2002 Jun;77(3):177-86.
    PMID: 12207039
    The genetic variation of Trigonobalanus verticillata, the most recently described genus of Fagaceae, was studied using chloroplast DNA sequences and AFLP fingerprinting. This species has a restricted distribution that is known to include seven localities in tropical lower montane forests in Malaysia and Indonesia. A total of 75 individuals were collected from Bario, Kinabalu, and Fraser's Hill in Malaysia. The sequences of rbcL, matK, and three non-coding regions (atpB-rbcL spacer, trnL intron, and trnL-trnF spacer) were determined for 19 individuals from these populations. We found a total of 30 nucleotide substitutions and four length variations, which allowed identification of three haplotypes characterizing each population. No substitutions were detected within populations, while the tandem repeats in the trnL -trnF spacer had a variable repeat number of a 20-bp motif only in Kinabalu. The differentiation of the populations inferred from the cpDNA molecular clock calibrated with paleontological data was estimated to be 8.3 MYA between Bario and Kinabalu, and 16.7 MYA between Fraser's Hill and the other populations. In AFLP analysis, four selective primer pairs yielded a total of 431 loci, of which 340 (78.9%) were polymorphic. The results showed relatively high gene diversity (H(S) = 0.153 and H(T) = 0.198) and nucleotide diversity (pi(S) = 0.0132 and pi(T) = 0.0168) both within and among the populations. Although the cpDNA data suggest that little or no gene flow occurred between the populations via seeds, the fixation index estimated from AFLP data (F(ST) = 0.153 and N(ST) = 0.214) implies that some gene flow occurs between populations, possibly through pollen transfer.
    Matched MeSH terms: Phylogeny
  13. Chua KB, Wang LF, Lam SK, Eaton BT
    Arch Virol, 2002 Jul;147(7):1323-48.
    PMID: 12111411
    A novel paramyxovirus in the genus Rubulavirus, named Tioman virus (TiV), was isolated in 1999 from a number of pooled urine samples of Island Flying Foxes (Pteropus hypomelanus) during the search for the reservoir host of Nipah virus. TiV is antigenically related to Menangle virus (MenV) that was isolated in Australia in 1997 during disease outbreak in pigs. Sequence analysis of the full length genome indicated that TiV is a novel member of the genus Rubulavirus within the subfamily Paramyxovirinae, family Paramyxoviridae. However, there are several features of TiV which make it unique among known paramyxoviruses and rubulaviruses in particular: (1) TiV, like MenV, uses the nucleotide G as a transcriptional initiation site, rather than the A residue used by all other known paramyxoviruses; (2) TiV uses C as the +1 residue for all intergenic regions, a feature not seen for rubulaviruses but common for all other members within the subfamily Paramyxovirinae; (3) Although the attachment protein of TiV has structural features that are conserved in other rubulaviruses, it manifests no overall sequence homology with members of the genus, lacks the sialic acid-binding motif N-R-K-S-C-S and has only two out of the six highly conserved residues known to be important for the catalytic activity of neuraminidase.
    Matched MeSH terms: Phylogeny
  14. Hasebe F, Parquet MC, Pandey BD, Mathenge EG, Morita K, Balasubramaniam V, et al.
    J Med Virol, 2002 Jul;67(3):370-4.
    PMID: 12116030
    A reverse transcription-polymerase chain reaction (RT-PCR) was developed for the detection of Chikungunya virus infection. Based on the nonstructural protein 1 (nsP1) and glycoprotein E1 (E1) genes of Chikungunya, two primer sets were designed. Total RNA were extracted from the cell culture fluid of Aedes albopictus C6/36 cells inoculated with the S27 prototype virus, isolated in Tanzania in 1953, and the Malaysian strains (MALh0198, MALh0298, and MALh0398), isolated in Malaysia in 1998. For both sets of RNA samples, the expected 354- and 294-base pair (bp) cDNA fragments were amplified effectively from the nsP1 and E1 genes, respectively. Phylogenetic analysis was conducted for the Malaysian strain and other virus strains isolated from different regions in the world endemic for Chikungunya, using partial E1 gene sequence data. The Malaysian strains isolated during the epidemics of 1998 fell into a cluster with other members of the Asian genotype.
    Matched MeSH terms: Phylogeny
  15. Cannon CH, Manos PS
    Syst Biol, 2002 7 16;50(6):860-80.
    PMID: 12116637
    Fruit type in the genus Lithocarpus (Fagaceae) includes both classic oak acorns and novel modifications. Bornean taxa with modified fruits can be separated into two sections (Synaedrys and Lithocarpus) based on subtle shape differences. By following strict criteria for homology and representation, this variation in shape can be captured and the sections distinguished by using elliptic Fourier or eigenshape analysis. Phenograms of fruit shape, constructed by using restricted maximum likelihood techniques and these morphometric descriptors, were incorporated into combined and comparative analyses with molecular sequence data from the internal transcribed spacer (ITS) region of the nuclear rDNA, using branch-weighted matrix representation. The combined analysis strongly suggested independent derivation of the novel fruit type in the two sections from different acornlike ancestors, while the comparative analysis indicated frequent decoupling between the molecular and morphological changes as inferred at well-supported nodes. The acorn fruit type has undergone little modification between ingroup and outgroup, despite large molecular distance. Greater morphological than molecular change was inferred at critical transitions between acorn and novel fruit types, particularly for section Lithocarpus. The combination of these two different types of data improved our understanding of the macroevolution of fruit type in this difficult group, and the comparative analysis highlighted the significant incongruities in evolutionary pattern between the two datasets.
    Matched MeSH terms: Phylogeny*
  16. AbuBakar S, Wong PF, Chan YF
    J Gen Virol, 2002 Oct;83(Pt 10):2437-2442.
    PMID: 12237425 DOI: 10.1099/0022-1317-83-10-2437
    Phylogenetic analyses of the envelope (E) gene sequence of five recently isolated dengue virus type 4 (DENV-4) suggested the emergence of a distinct geographical and temporal DENV-4 subgenotype IIA in Malaysia. Four of the isolates had direct ancestral lineage with DENV-4 Indonesia 1973 and showed evidence of intra-serotypic recombination with the other recently isolated DENV-4, MY01-22713. The E gene of isolate MY01-22713 had strong evidence of an earlier recombination involving DENV-4 genotype II Indonesia 1976 and genotype I Malaysia 1969. These results suggest that intra-serotypic recombination amongst DENV-4 from independent ancestral lineages may have contributed to the emergence of DENV-4 subgenotype IIA in Malaysia.
    Matched MeSH terms: Phylogeny
  17. Sudthongkong C, Miyata M, Miyazaki T
    Arch Virol, 2002 Nov;147(11):2089-109.
    PMID: 12417946
    Tropical iridovirus infection causes severe epizootic resulting in mass mortalities and large economic losses in freshwater ornamental fishes cultured in Southeast Asian countries, in wild fish seedlings captured in South China Sea, and in marine fishes farmed in Japan, Singapore, and Thailand. All of tropical iridovirus-infected fishes histopathologically showed the systemic formation of inclusion body-bearing cells and necrosis of virus-infected splenocytes and hematopoietic cells. We designed primer sets for the ATPase gene and the major capsid protein (MCP) gene and sequenced the PCR products derived from 5 iridovirus isolates from sea bass in South China Sea, red sea bream in Japan, brown-spotted grouper with a grouper sleepy disease in Thailand, dwarf gourami from Malaysia and African lampeye from Sumatra Island, Indonesia. The ATPase gene and the MCP gene of these 5 viral isolates were highly homologous (> 95.8%, > 94.9% identity, respectively) and the deduced amino acid sequences of the ATPase and the MCP were also highly identical (> 98.1%, > 97.2% identity, respectively). Based on the high homology, these 5 isolates of tropical iridovirus from various fishes in geographically different regions were determined to have a single origin and to be native to Southeast Asian regions. However, these sequences were far different from those of members of the genera Ranavirus, Lymphocystivirus and Iridovirus in the Family Iridoviridae. We propose a new genus "Tropivirus" for tropical iridovirus in the Family Iridoviridae.
    Matched MeSH terms: Phylogeny
  18. Kianizadeh M, Aini I, Omar AR, Yusoff K, Sahrabadi M, Kargar R
    Acta Virol., 2002;46(4):247-51.
    PMID: 12693862
    Nine Newcastle disease virus (NDV) isolates from Newcastle disease (ND) outbreaks in different regions of Iran were characterized at molecular level. Sequence analysis revealed that the isolates shared two pairs of arginine and a phenylalanine at the N-terminus of the fusion (F) protein cleavage site similarly to other velogenic isolates of NDV characterized earlier. Eight of the nine isolates had the same amino acid sequence as VOL95, a Russian NDV isolate from 1995. However, one isolate, MK13 showed 5 amino acid substitutions, of which 3 have been reported for other velogenic NDV isolates. These results suggest that the origin of the outbreaks of ND in different parts of Iran in 1995-1998 is VOL95.
    Matched MeSH terms: Phylogeny*
  19. Khoo BY, Samian MR, Najimudin N, Tengku Muhammad TS
    PMID: 12524031
    The coding region of guinea pig peroxisome proliferator activated receptor gamma1 (gpPPARgamma1) cDNA was successfully cloned from adipose tissue by reverse transcription polymerase chain reaction (RT-PCR) using the designated primers based on the conserved regions of the other mammalian PPARgamma1 sequence. From RT-PCR, a combination of three cDNA fragments that comprised of the full length coding region PPARgamma1 cDNA gene were amplified, with the size of 498, 550 and 557 bp, respectively. All three fragments were then successfully assembled by utilising the internal restriction sites present at the overlapping regions to give rise to the full-length coding region of gpPPARgamma1 with the size of 1428 bp and consisting of 475 amino acids. Guinea pig PPARgamma1 is highly conserved with those of other species at protein and nucleotide levels. Gene expression studies showed that gpPPARgamma mRNA was predominantly expressed in adipose tissue followed by lung and spleen. However, at the protein level, PPARgamma was also found to be expressed in skeletal muscle.
    Matched MeSH terms: Phylogeny
  20. Munemura T, Saikusa M, Kawakami C, Shimizu H, Oseto M, Hagiwara A, et al.
    Arch Virol, 2003 Feb;148(2):253-63.
    PMID: 12556991
    Enterovirus 71 (EV71) is known as one of the major causative agents of hand, foot and mouse disease (HFMD) and is also associated with neurological manifestations such as aseptic meningitis, polio-like paralysis and encephalitis. Recently, large HFMD outbreaks, involving severe neurological complications, have been experienced in Malaysia, Taiwan and some other countries in the Western-Pacific region. To investigate the genetic diversity of EV71 isolates in a single community in Japan, nucleotide sequences of the VP4 region of 52 EV71 isolates in Yokohama City from 1982 to 2000 were determined and the phylogenetic relationship was compared with other referential EV71 strains in Japan and in the world. There were two major genotypes of EV71 in Yokohama City through the 1980's and 1990's. Six EV71 isolates in the early 1980's in Yokohama City were closely related to those from HFMD outbreaks in Japan and from outbreaks of polio-like paralysis in Europe in the 1970's. During recent HFMD outbreaks in 1997 and 2000, two distinct genotypes of EV71 were co-circulating in Yokohama City as in HFMD outbreaks in Malaysia and Taiwan. However, the genetic diversity of EV71 in Yokohama City was not directly correlated with the severity of HFMD. The results confirmed the circulation of two distinct genotypes of EV71 over the past 20 years in Japan.
    Matched MeSH terms: Phylogeny
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links