Displaying publications 61 - 64 of 64 in total

Abstract:
Sort:
  1. Chai PF, Lee WS
    Vaccine, 2009 Nov 20;27 Suppl 5:F112-5.
    PMID: 19931708 DOI: 10.1016/j.vaccine.2009.08.069
    From August 2006 to July 2007 a prospective study of out-of-pocket costs incurred by care-givers of children hospitalized for rotavirus gastroenteritis was conducted in a hospital in Malaysia. Data on caretaker out-of-pocket costs were collected from 260 children hospitalized with diarrhoea. A stool sample was collected from 198 of these children of which 46 (23%) were positive for rotavirus by latex agglutination assay. The mean (median; interquartile range) out-of-pocket cost incurred by the care-givers was US$194 (US$169; US$47-738), constituting 26% of average monthly income of the households surveyed. Major components of the cost were hospital expenses (45%) and productivity loss (37%). These findings will allow further assessment of the cost-effectiveness of any future rotavirus immunization program in Malaysia.
    Matched MeSH terms: Rotavirus Infections/economics*
  2. Kotirum S, Vutipongsatorn N, Kongpakwattana K, Hutubessy R, Chaiyakunapruk N
    Vaccine, 2017 06 08;35(26):3364-3386.
    PMID: 28504193 DOI: 10.1016/j.vaccine.2017.04.051
    INTRODUCTION: World Health Organization (WHO) recommends Rotavirus vaccines to prevent and control rotavirus infections. Economic evaluations (EE) have been considered to support decision making of national policy. Summarizing global experience of the economic value of rotavirus vaccines is crucial in order to encourage global WHO recommendations for vaccine uptake. Therefore, a systematic review of economic evaluations of rotavirus vaccine was conducted.

    METHODS: We searched Medline, Embase, NHS EED, EconLit, CEA Registry, SciELO, LILACS, CABI-Global Health Database, Popline, World Bank - e-Library, and WHOLIS. Full economic evaluations studies, published from inception to November 2015, evaluating Rotavirus vaccines preventing Rotavirus infections were included. The methods, assumptions, results and conclusions of the included studies were extracted and appraised using WHO guide for standardization of EE of immunization programs.

    RESULTS: 104 relevant studies were included. The majority of studies were conducted in high-income countries. Cost-utility analysis was mostly reported in many studies using incremental cost-effectiveness ratio per DALY averted or QALY gained. Incremental cost per QALY gained was used in many studies from high-income countries. Mass routine vaccination against rotavirus provided the ICERs ranging from cost-saving to highly cost-effective in comparison to no vaccination among low-income countries. Among middle-income countries, vaccination offered the ICERs ranging from cost-saving to cost-effective. Due to low- or no subsidized price of rotavirus vaccines from external funders, being not cost-effective was reported in some high-income settings.

    CONCLUSION: Mass vaccination against rotavirus was generally found to be cost-effective, particularly in low- and middle-income settings according to the external subsidization of vaccine price. On the other hand, it may not be a cost-effective intervention at market price in some high-income settings. This systematic review provides supporting information to health policy-makers and health professionals when considering rotavirus vaccination as a national program.

    Matched MeSH terms: Rotavirus Infections/prevention & control*; Rotavirus Vaccines/economics; Rotavirus Vaccines/therapeutic use*
  3. Lo Vecchio A, Liguoro I, Dias JA, Berkley JA, Boey C, Cohen MB, et al.
    Vaccine, 2017 03 14;35(12):1637-1644.
    PMID: 28216189 DOI: 10.1016/j.vaccine.2017.01.082
    BACKGROUND: Rotavirus (RV) is a major agent of gastroenteritis and an important cause of child death worldwide. Immunization (RVI) has been available since 2006, and the Federation of International Societies of Gastroenterology Hepatology and Nutrition (FISPGHAN) identified RVI as a top priority for the control of diarrheal illness. A FISPGHAN working group on acute diarrhea aimed at estimating the current RVI coverage worldwide and identifying barriers to implementation at local level.

    METHODS: A survey was distributed to national experts in infectious diseases and health-care authorities (March 2015-April 2016), collecting information on local recommendations, costs and perception of barriers for implementation.

    RESULTS: Forty-nine of the 79 contacted countries (62% response rate) provided a complete analyzable data. RVI was recommended in 27/49 countries (55%). Although five countries have recommended RVI since 2006, a large number (16, 33%) included RVI in a National Immunization Schedule between 2012 and 2014. The costs of vaccination are covered by the government (39%), by the GAVI Alliance (10%) or public and private insurance (8%) in some countries. However, in most cases, immunization is paid by families (43%). Elevated cost of vaccine (49%) is the main barrier for implementation of RVI. High costs of vaccination (rs=-0.39, p=0.02) and coverage of expenses by families (rs=0.5, p=0.002) significantly correlate with a lower immunization rate. Limited perception of RV illness severity by the families (47%), public-health authorities (37%) or physicians (24%) and the timing of administration (16%) are further major barriers to large- scale RVI programs.

    CONCLUSIONS: After 10years since its introduction, the implementation of RVI is still unacceptably low and should remain a major target for global public health. Barriers to implementation vary according to setting. Nevertheless, public health authorities should promote education for caregivers and health-care providers and interact with local health authorities in order to implement RVI.

    Matched MeSH terms: Rotavirus Infections/epidemiology*; Rotavirus Infections/prevention & control*; Rotavirus Vaccines/administration & dosage*; Rotavirus Vaccines/immunology*
  4. Peng R, Li D, Wang J, Xiong G, Wang M, Liu D, et al.
    Virol J, 2023 Jun 22;20(1):135.
    PMID: 37349792 DOI: 10.1186/s12985-023-02064-5
    OBJECTIVE: To isolate a prevalent G9P[8] group A rotavirus (RVA) (N4006) in China and investigate its genomic and evolutionary characteristics, with the goal of facilitating the development of a new rotavirus vaccine.

    METHODS: The RVA G9P[8] genotype from a diarrhea sample was passaged in MA104 cells. The virus was evaluated by TEM, polyacrylamide gel electrophoresis, and indirect immunofluorescence assay. The complete genome of virus was obtained by RT-PCR and sequencing. The genomic and evolutionary characteristics of the virus were evaluated by nucleic acid sequence analysis with MEGA ver. 5.0.5 and DNASTAR software. The neutralizing epitopes of VP7 and VP4 (VP5* and VP8*) were analyzed using BioEdit ver. 7.0.9.0 and PyMOL ver. 2.5.2.

    RESULTS: The RVA N4006 (G9P[8] genotype) was adapted in MA104 cells with a high titer (105.5 PFU/mL). Whole-genome sequence analysis showed N4006 to be a reassortant rotavirus of Wa-like G9P[8] RVA and the NSP4 gene of DS-1-like G2P[4] RVA, with the genotype constellation G9-P[8]-I1-R1-C1-M1-A1-N1-T1-E2-H1 (G9P[8]-E2). Phylogenetic analysis indicated that N4006 had a common ancestor with Japanese G9P[8]-E2 rotavirus. Neutralizing epitope analysis showed that VP7, VP5*, and VP8* of N4006 had low homology with vaccine viruses of the same genotype and marked differences with vaccine viruses of other genotypes.

    CONCLUSION: The RVA G9P[8] genotype with the G9-P[8]-I1-R1-C1-M1-A1-N1-T1-E2-H1 (G9P[8]-E2) constellation predominates in China and may originate from reassortment between Japanese G9P[8] with Japanese DS-1-like G2P[4] rotaviruses. The antigenic variation of N4006 with the vaccine virus necessitates an evaluation of the effect of the rotavirus vaccine on G9P[8]-E2 genotype rotavirus.

    Matched MeSH terms: Rotavirus*; Rotavirus Vaccines*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links