Displaying publications 61 - 63 of 63 in total

Abstract:
Sort:
  1. Harano K, Harano T
    Rinsho Byori, 2010 Apr;58(4):325-31.
    PMID: 20496759
    Hb and gene analyses of a Malaysian mother and her two daughters with microcytic anemia living in Japan were performed. Hb analyses of their hemolysates by IEF and DEAE-HPLC revealed high values of Hb A2 and HbF, but abnormal Hbs such as Hb E and Hb Constant Spring, which cause beta- and alpha-thalassemia traits, were not detected. From these data, they were suspected to be beta-thalassemia carriers. The thalassemic mutations commonly found in the Asian area by ARMS and nucleotide sequencing methods were not detected, and the frameworks of the beta-globin gene and the haplotypes of the beta-like globin gene cluster between the mother and daughters were not identical. These results led us to conclude that there was a beta(0)-thalassemia mutation with a large deletion from the beta-globin gene beyond the 3'beta/BamHI polymorphic site 3' downstream to the beta-globin gene. However, the range of the deletion from the beta-like globin gene cluster has not yet been completed in detail. Recently, there have been many foreigners mainly from Asian countries in Japan. We may encounter people with the rare type thalassemic mutation described in the text besides the mutations frequently found in Asian countries.
    Matched MeSH terms: beta-Thalassemia/genetics*
  2. Harano K, Harano T
    Rinsho Byori, 2013 Mar;61(3):217-23.
    PMID: 23785790
    This study was done to detect and diagnose beta-thalassemia (beta-Thal) gene quickly. We applied sequence specific Amplification (SSA) method to the analysis. 13 kinds of beta-Thal and two kinds of hemoglobin variants were able to detect under the same PCR condition. These mutations were found frequently in ten countries of Asian region (the southern part of China, Vietnam, Cambodia, Thailand, Myanmar, Malaysia, Singapore, Indonesia, Pakistan, India), and 15 kinds in total (-28CapA-->G, CD5-CT, CD8/9+-G, CD15G-->A, CD17A-->T, IVSI-1G-->T, CD41/42-4del, CD16-C, CD26G-->A(betaE), IVSI-5G-->C, CD35C-->A, CD71/72 +A, CD6A-->T (betaS), -619del, IVSII-654C-->T). More than 80% of patients are included in these mutations. To make the reagents a kit, the procedure became simple and rapid. DNA was extracted by salting out method. The PCR product was detected by polyacrylamide gel electrophoresis and silver staining. The confirmation of the variant was done by the PCR-direct sequencing method. It took approximately six hours for PCR reaction, electrophoresis and staining. This method made us to detect and diagnose beta-Thal in one day.
    Matched MeSH terms: beta-Thalassemia/genetics
  3. Lim WF, Muniandi L, George E, Sathar J, Teh LK, Gan GG, et al.
    Blood Cells Mol. Dis., 2012 Jan 15;48(1):17-21.
    PMID: 22079025 DOI: 10.1016/j.bcmd.2011.10.002
    The alpha haemoglobin stabilising protein (AHSP) acts as a molecular chaperone for α-globin by stabilising nascent α-globin before transferring it to waiting free β-globin chains. Binding of AHSP to α-globin renders α-globin chemically inert whereby preventing it from precipitating and forming reactive oxygen species byproducts. The AHSP has been actively studied in the recent years, particularly in its relation to β-thalassaemia. Studies have shown that AHSP is a modifier in β-thalassaemia mice models. However, this relationship is less established in humans. Studies by some groups showed no correlation between the AHSP haplotypes and the severity of β-thalassaemia, whereas others have shown that certain AHSP haplotype could modify the phenotype of β-thalassaemia intermedia patients. We investigated the expression of AHSP in relation to selected demographic data, full blood count, HPLC results, HbE/β-thalassaemia genotype, Xmn-1 Gγ polymorphism, α-globin, β-globin and γ-globin expression. We found that AHSP expression was significantly correlated to mean cell haemoglobin level, HbF %, α-globin, β-globin and excess α-globin expression. We concluded that AHSP could be a secondary compensatory mechanism in red blood cells to counterbalance the excess α-globin chains in HbE/β-thalassaemia individuals.
    Matched MeSH terms: beta-Thalassemia/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links