Displaying publications 61 - 64 of 64 in total

Abstract:
Sort:
  1. Awang MB, Jaafar AB, Abdullah AM, Ismail MB, Hassan MN, Abdullah R, et al.
    Respirology, 2000 Jun;5(2):183-96.
    PMID: 10894109
    OBJECTIVE: Observations have been made on the long-term trends of major air pollutants in Malaysia including nitrogen dioxide, carbon monoxide, the ozone and total suspended particulate matter (particularly PM10), and sulfur dioxide, emitted from industrial and urban areas from early 1970s until late 1998.

    METHODOLOGY: The data show that the status of atmospheric environment in Malaysia, in particular in highly industrialized areas such as Klang Valley, was determined both by local and transboundary emissions and could be described as haze and non-haze periods.

    RESULTS: During the non-haze periods, vehicular emissions accounted for more than 70% of the total emissions in the urban areas and have demonstrated two peaks in the diurnal variations of the aforementioned air pollutants, except ozone. The morning 'rush-hour' peak was mainly due to vehicle emissions, while the late evening peak was mainly attributed to meteorological conditions, particularly atmospheric stability and wind speed. Total suspended particulate matter was the main pollutant with its concentrations at few sites often exceeding the Recommended Malaysia Air Quality Guidelines. The levels of other pollutants were generally within the guidelines. Since 1980, six major haze episodes were officially reported in Malaysia: April 1983, August 1990, June 1991, October 1991, August to October 1994, and July to October 1997. The 1997 haze episode was the worst ever experienced by the country. Short-term observations using continuous monitoring systems during the haze episodes during these periods clearly showed that suspended particulate matter (PM10) was the main cause of haze and was transboundary in nature. Large forest fires in parts of Sumatra and Kalimantan during the haze period, clearly evident in satellite images, were identified as the probable key sources of the widespread heavy haze that extended across Southeast Asia from Indonesia to Singapore, Malaysia and Brunei. The results of several studies have also provided strong evidence that biomass burning is the dominating source of particulate matter. The severity and extent of 1997's haze pollution was unprecedented, affecting some 300 million people across the region. The amount of economic costs suffered by Southeast Asian countries during this environmental disaster was enormous and is yet to be fully determined. Among the important sectors severely affected were air and land transport, shipping, construction, tourism and agro-based industries. The economic cost of the haze-related damage to Malaysia presented in this study include short-term health costs, production losses, tourism-related losses and the cost of avertive action. Although the cost reported here is likely to be underestimated, they are nevertheless significant (roughly RM1 billion).

    CONCLUSIONS: The general air quality of Malaysia since 1970 has deteriorated. Studies have shown that should no effective countermeasures be introduced, the emissions of sulfur dioxide, nitrogen oxides, particulate matter, hydrocarbons and carbon monoxide in the year 2005 would increase by 1.4, 2.12, 1.47 and 2.27 times, respectively, from the 1992 levels.

    Matched MeSH terms: Fires
  2. Nguyen TTN, Pham HV, Lasko K, Bui MT, Laffly D, Jourdan A, et al.
    Environ Pollut, 2019 Dec;255(Pt 1):113106.
    PMID: 31541826 DOI: 10.1016/j.envpol.2019.113106
    Satellite observations for regional air quality assessment rely on comprehensive spatial coverage, and daily monitoring with reliable, cloud-free data quality. We investigated spatiotemporal variation and data quality of two global satellite Aerosol Optical Depth (AOD) products derived from MODIS and VIIRS imagery. AOD is considered an essential atmospheric parameter strongly related to ground Particulate Matter (PM) in Southeast Asia (SEA). We analyze seasonal variation, urban/rural area influence, and biomass burning effects on atmospheric pollution. Validation indicated a strong relationship between AERONET ground AOD and both MODIS AOD (R2 = 0.81) and VIIRS AOD (R2 = 0.68). The monthly variation of satellite AOD and AERONET AOD reflects two seasonal trends of air quality separately for mainland countries including Myanmar, Laos, Cambodia, Thailand, Vietnam, and Taiwan, Hong Kong, and for maritime countries consisting of Indonesia, Philippines, Malaysia, Brunei, Singapore, and Timor Leste. The mainland SEA has a pattern of monthly AOD variation in which AODs peak in March/April, decreasing during wet season from May-September, and increasing to the second peak in October. However, in maritime SEA, AOD concentration peaks in October. The three countries with the highest annual satellite AODs are Singapore, Hong Kong, and Vietnam. High urban population proportions in Singapore (40.7%) and Hong Kong (21.6%) were associated with high AOD concentrations as expected. AOD values in SEA urban areas were a factor of 1.4 higher than in rural areas, with respective averages of 0.477 and 0.336. The AOD values varied proportionately to the frequency of biomass burning in which both active fires and AOD peak in March/April and September/October. Peak AOD in September/October in some countries could be related to pollutant transport of Indonesia forest fires. This study analyzed satellite aerosol product quality in relation to AERONET in SEA countries and highlighted framework of air quality assessment over a large, complicated region.
    Matched MeSH terms: Fires
  3. Rahmat RA, Humphries MA, Austin JJ, Linacre AMT, Self P
    Int J Legal Med, 2021 Sep;135(5):2045-2053.
    PMID: 33655354 DOI: 10.1007/s00414-021-02538-7
    This study presents a novel tool to predict temperature-exposure of incinerated pig teeth as a proxy for understanding impacts of fire on human teeth. Previous studies on the estimation of temperature-exposure of skeletal elements have been limited to that of heat-exposed bone. This predictive tool was developed using a multinomial regression model of colourimetric and hydroxyapatite crystal size variables using data obtained from unheated pig teeth and teeth incinerated at 300 °C, 600 °C, 800 °C and 1000 °C. An additional variable based on the observed appearance of the tooth was included in the tool. This enables the tooth to be classified as definitely burnt (600 °C-1000 °C) or uncertain (27 °C/300 °C). As a result, the model predicting the temperature-exposure of the incinerated teeth had an accuracy of 95%. This tool is a holistic, robust and reliable approach to estimate temperature of heat-exposed pig teeth, with high accuracy, and may act as a valuable proxy to estimate heat exposure for human teeth in forensic casework.
    Matched MeSH terms: Fires
  4. Sulong NA, Latif MT, Khan MF, Amil N, Ashfold MJ, Wahab MIA, et al.
    Sci Total Environ, 2017 Dec 01;601-602:556-570.
    PMID: 28575833 DOI: 10.1016/j.scitotenv.2017.05.153
    This study aims to determine PM2.5concentrations and their composition during haze and non-haze episodes in Kuala Lumpur. In order to investigate the origin of the measured air masses, the Numerical Atmospheric-dispersion Modelling Environment (NAME) and Global Fire Assimilation System (GFAS) were applied. Source apportionment of PM2.5was determined using Positive Matrix Factorization (PMF). The carcinogenic and non-carcinogenic health risks were estimated using the United State Environmental Protection Agency (USEPA) method. PM2.5samples were collected from the centre of the city using a high-volume air sampler (HVS). The results showed that the mean PM2.5concentrations collected during pre-haze, haze and post-haze periods were 24.5±12.0μgm-3, 72.3±38.0μgm-3and 14.3±3.58μgm-3, respectively. The highest concentration of PM2.5during haze episode was five times higher than World Health Organisation (WHO) guidelines. Inorganic compositions of PM2.5, including trace elements and water soluble ions were determined using inductively coupled plasma-mass spectrometry (ICP-MS) and ion chromatography (IC), respectively. The major trace elements identified were K, Al, Ca, Mg and Fe which accounted for approximately 93%, 91% and 92% of the overall metals' portions recorded during pre-haze, haze and post-haze periods, respectively. For water-soluble ions, secondary inorganic aerosols (SO42-, NO3-and NH4+) contributed around 12%, 43% and 16% of the overall PM2.5mass during pre-haze, haze and post-haze periods, respectively. During haze periods, the predominant source identified using PMF was secondary inorganic aerosol (SIA) and biomass burning where the NAME simulations indicate the importance of fires in Sumatra, Indonesia. The main source during pre-haze and post-haze were mix SIA and road dust as well as mineral dust, respectively. The highest non-carcinogenic health risk during haze episode was estimated among the infant group (HI=1.06) while the highest carcinogenic health risk was estimated among the adult group (2.27×10-5).
    Matched MeSH terms: Fires
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links