Displaying publications 81 - 100 of 231 in total

Abstract:
Sort:
  1. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2019;79(3):277.
    PMID: 31007586 DOI: 10.1140/epjc/s10052-019-6774-8
    The exclusive photoproduction of Υ ( nS ) meson states from protons, γ p → Υ ( nS ) p (with n = 1 , 2 , 3 ), is studied in ultraperipheral p Pb collisions at a centre-of-mass energy per nucleon pair of s NN = 5.02 TeV . The measurement is performed using the Υ ( nS ) → μ + μ - decay mode, with data collected by the CMS experiment corresponding to an integrated luminosity of 32.6 nb - 1 . Differential cross sections as functions of the Υ ( nS ) transverse momentum squared p T 2 , and rapidity y, are presented. The Υ ( 1 S ) photoproduction cross section is extracted in the rapidity range | y | < 2.2 , which corresponds to photon-proton centre-of-mass energies in the range 91 < W γ p < 826 GeV . The data are compared to theoretical predictions based on perturbative quantum chromodynamics and to previous measurements.
  2. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2016;76(7):372.
    PMID: 28280445 DOI: 10.1140/epjc/s10052-016-4205-7
    Inclusive jet production in pPb collisions at a nucleon-nucleon (NN) center-of-mass energy of [Formula: see text] is studied with the CMS detector at the LHC. A data sample corresponding to an integrated luminosity of 30.1 nb[Formula: see text] is analyzed. The jet transverse momentum spectra are studied in seven pseudorapidity intervals covering the range [Formula: see text] in the NN center-of-mass frame. The jet production yields at forward and backward pseudorapidity are compared and no significant asymmetry about [Formula: see text] is observed in the measured kinematic range. The measurements in the pPb system are compared to reference jet spectra obtained by extrapolation from previous measurements in pp collisions at [Formula: see text]. In all pseudorapidity ranges, nuclear modifications in inclusive jet production are found to be small, as predicted by next-to-leading order perturbative QCD calculations that incorporate nuclear effects in the parton distribution functions.
  3. Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, Brandstetter J, et al.
    Eur Phys J C Part Fields, 2017;77(4):269.
    PMID: 28515672 DOI: 10.1140/epjc/s10052-017-4828-3
    This paper reports the measurement of [Formula: see text] meson production in proton-proton ([Formula: see text]) and proton-lead ([Formula: see text]) collisions at a center-of-mass energy per nucleon pair of [Formula: see text] by the CMS experiment at the LHC. The data samples used in the analysis correspond to integrated luminosities of 28[Formula: see text] and 35[Formula: see text] for [Formula: see text] and [Formula: see text] collisions, respectively. Prompt and nonprompt [Formula: see text] mesons, the latter produced in the decay of [Formula: see text] hadrons, are measured in their dimuon decay channels. Differential cross sections are measured in the transverse momentum range of [Formula: see text], and center-of-mass rapidity ranges of [Formula: see text] ([Formula: see text]) and [Formula: see text] ([Formula: see text]). The nuclear modification factor, [Formula: see text], is measured as a function of both [Formula: see text] and [Formula: see text]. Small modifications to the [Formula: see text] cross sections are observed in [Formula: see text] relative to [Formula: see text] collisions. The ratio of [Formula: see text] production cross sections in [Formula: see text]-going and Pb-going directions, [Formula: see text], studied as functions of [Formula: see text] and [Formula: see text], shows a significant decrease for increasing transverse energy deposited at large pseudorapidities. These results, which cover a wide kinematic range, provide new insight on the role of cold nuclear matter effects on prompt and nonprompt [Formula: see text] production.
  4. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2018;78(6):509.
    PMID: 30956556 DOI: 10.1140/epjc/s10052-018-5950-6
    The nuclear modification factors of J / ψ and ψ (2S) mesons are measured in PbPb collisions at a centre-of-mass energy per nucleon pair of s NN = 5.02 TeV . The analysis is based on PbPb and p p data samples collected by CMS at the LHC in 2015, corresponding to integrated luminosities of 464 μ b - 1 and 28 pb -1 , respectively. The measurements are performed in the dimuon rapidity range of | y | < 2.4 as a function of centrality, rapidity, and transverse momentum ( p T ) from p T = 3 GeV / c in the most forward region and up to 50 GeV / c . Both prompt and nonprompt (coming from b hadron decays) J / ψ mesons are observed to be increasingly suppressed with centrality, with a magnitude similar to the one observed at s NN = 2.76 TeV for the two J / ψ meson components. No dependence on rapidity is observed for either prompt or nonprompt J / ψ mesons. An indication of a lower prompt J / ψ meson suppression at p T > 25 GeV / c is seen with respect to that observed at intermediate p T . The prompt ψ (2S) meson yield is found to be more suppressed than that of the prompt J / ψ mesons in the entire p T range.
  5. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2020;80(12):1164.
    PMID: 33362286 DOI: 10.1140/epjc/s10052-020-08562-y
    Measurements are presented of the single-diffractive dijet cross section and the diffractive cross section as a function of the proton fractional momentum loss ξ and the four-momentum transfer squared t. Both processes p p → p X and p p → X p , i.e. with the proton scattering to either side of the interaction point, are measured, where X includes at least two jets; the results of the two processes are averaged. The analyses are based on data collected simultaneously with the CMS and TOTEM detectors at the LHC in proton-proton collisions at s = 8 Te during a dedicated run with β ∗ = 90 m at low instantaneous luminosity and correspond to an integrated luminosity of 37.5 nb - 1 . The single-diffractive dijet cross section σ jj p X , in the kinematic region ξ < 0.1 , 0.03 < | t | < 1 Ge 2 , with at least two jets with transverse momentum p T > 40 Ge , and pseudorapidity | η | < 4.4 , is 21.7 ± 0.9 (stat) - 3.3 + 3.0 (syst) ± 0.9 (lumi) nb . The ratio of the single-diffractive to inclusive dijet yields, normalised per unit of ξ , is presented as a function of x, the longitudinal momentum fraction of the proton carried by the struck parton. The ratio in the kinematic region defined above, for x values in the range - 2.9 ≤ log 10 x ≤ - 1.6 , is R = ( σ jj p X / Δ ξ ) / σ jj = 0.025 ± 0.001 (stat) ± 0.003 (syst) , where σ jj p X and σ jj are the single-diffractive and inclusive dijet cross sections, respectively. The results are compared with predictions from models of diffractive and nondiffractive interactions. Monte Carlo predictions based on the HERA diffractive parton distribution functions agree well with the data when corrected for the effect of soft rescattering between the spectator partons.
  6. Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, Brandstetter J, et al.
    Phys Rev Lett, 2017 Oct 13;119(15):152301.
    PMID: 29077459 DOI: 10.1103/PhysRevLett.119.152301
    The differential production cross sections of B^{±} mesons are measured via the exclusive decay channels B^{±}→J/ψK^{±}→μ^{+}μ^{-}K^{±} as a function of transverse momentum in pp and Pb-Pb collisions at a center-of-mass energy sqrt[s_{NN}]=5.02  TeV per nucleon pair with the CMS detector at the LHC. The pp(Pb-Pb) data set used for this analysis corresponds to an integrated luminosity of 28.0  pb^{-1} (351  μb^{-1}). The measurement is performed in the B^{±} meson transverse momentum range of 7 to 50  GeV/c, in the rapidity interval |y|<2.4. In this kinematic range, a strong suppression of the production cross section by about a factor of 2 is observed in the Pb-Pb system in comparison to the expectation from pp reference data. These results are found to be roughly compatible with theoretical calculations incorporating beauty quark diffusion and energy loss in a quark-gluon plasma.
  7. Tumasyan A, Adam W, Andrejkovic JW, Bergauer T, Chatterjee S, Damanakis K, et al.
    Phys Rev Lett, 2023 Sep 22;131(12):121901.
    PMID: 37802954 DOI: 10.1103/PhysRevLett.131.121901
    The dependence of the ratio between the B_{s}^{0} and B^{+} hadron production fractions, f_{s}/f_{u}, on the transverse momentum (p_{T}) and rapidity of the B mesons is studied using the decay channels B_{s}^{0}→J/ψϕ and B^{+}→J/ψK^{+}. The analysis uses a data sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the CMS experiment in 2018 and corresponding to an integrated luminosity of 61.6  fb^{-1}. The f_{s}/f_{u} ratio is observed to depend on the B p_{T} and to be consistent with becoming asymptotically constant at large p_{T}. No rapidity dependence is observed. The ratio of the B^{0} to B^{+} meson production fractions, f_{d}/f_{u}, is also measured, for the first time in proton-proton collisions, using the B^{0}→J/ψK^{*0} decay channel. The result is found to be within 1 standard deviation of unity and independent of p_{T} and rapidity, as expected from isospin invariance.
  8. Sirunyan AM, Tumasyan A, Adam W, Bergauer T, Dragicevic M, Erö J, et al.
    Eur Phys J C Part Fields, 2021;81(4):378.
    PMID: 34727142 DOI: 10.1140/epjc/s10052-021-09014-x
    The rate for Higgs ( H ) bosons production in association with either one ( t H ) or two ( t t ¯ H ) top quarks is measured in final states containing multiple electrons, muons, or tau leptons decaying to hadrons and a neutrino, using proton-proton collisions recorded at a center-of-mass energy of 13 TeV by the CMS experiment. The analyzed data correspond to an integrated luminosity of 137 fb - 1 . The analysis is aimed at events that contain H → W W , H → τ τ , or H → Z Z decays and each of the top quark(s) decays either to lepton+jets or all-jet channels. Sensitivity to signal is maximized by including ten signatures in the analysis, depending on the lepton multiplicity. The separation among t H , t t ¯ H , and the backgrounds is enhanced through machine-learning techniques and matrix-element methods. The measured production rates for the t t ¯ H and t H signals correspond to 0.92 ± 0.19 (stat) - 0.13 + 0.17 (syst) and 5.7 ± 2.7 (stat) ± 3.0 (syst) of their respective standard model (SM) expectations. The corresponding observed (expected) significance amounts to 4.7 (5.2) standard deviations for t t ¯ H , and to 1.4 (0.3) for t H production. Assuming that the Higgs boson coupling to the tau lepton is equal in strength to its expectation in the SM, the coupling y t of the Higgs boson to the top quark divided by its SM expectation, κ t = y t / y t SM , is constrained to be within - 0.9 < κ t < - 0.7 or 0.7 < κ t < 1.1 , at 95% confidence level. This result is the most sensitive measurement of the t t ¯ H production rate to date.
  9. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2018 Apr 06;120(14):142302.
    PMID: 29694107 DOI: 10.1103/PhysRevLett.120.142302
    Data from heavy ion collisions suggest that the evolution of a parton shower is modified by interactions with the color charges in the dense partonic medium created in these collisions, but it is not known where in the shower evolution the modifications occur. The momentum ratio of the two leading partons, resolved as subjets, provides information about the parton shower evolution. This substructure observable, known as the splitting function, reflects the process of a parton splitting into two other partons and has been measured for jets with transverse momentum between 140 and 500 GeV, in pp and PbPb collisions at a center-of-mass energy of 5.02 TeV per nucleon pair. In central PbPb collisions, the splitting function indicates a more unbalanced momentum ratio, compared to peripheral PbPb and pp collisions.. The measurements are compared to various predictions from event generators and analytical calculations.
  10. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2017;77(4):236.
    PMID: 28515665 DOI: 10.1140/epjc/s10052-017-4730-z
    The WZ production cross section is measured by the CMS experiment at the CERN LHC in proton-proton collision data samples corresponding to integrated luminosities of 4.9[Formula: see text] collected at [Formula: see text], and 19.6[Formula: see text] at [Formula: see text]. The measurements are performed using the fully-leptonic WZ decay modes with electrons and muons in the final state. The measured cross sections for [Formula: see text] are [Formula: see text] [Formula: see text] and [Formula: see text] [Formula: see text]. Differential cross sections with respect to the [Formula: see text] boson [Formula: see text], the leading jet [Formula: see text], and the number of jets are obtained using the [Formula: see text] data. The results are consistent with standard model predictions and constraints on anomalous triple gauge couplings are obtained.
  11. Sirunyan AM, Tumasyan A, Adam W, Andrejkovic JW, Bergauer T, Chatterjee S, et al.
    Phys Rev Lett, 2021 Jun 25;126(25):252002.
    PMID: 34241533 DOI: 10.1103/PhysRevLett.126.252002
    A fiducial cross section for Wγ production in proton-proton collisions is measured at a center-of-mass energy of 13 TeV in 137  fb^{-1} of data collected using the CMS detector at the LHC. The W→eν and μν decay modes are used in a maximum-likelihood fit to the lepton-photon invariant mass distribution to extract the combined cross section. The measured cross section is compared with theoretical expectations at next-to-leading order in quantum chromodynamics. In addition, 95% confidence level intervals are reported for anomalous triple-gauge couplings within the framework of effective field theory.
  12. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2018;78(9):708.
    PMID: 30956559 DOI: 10.1140/epjc/s10052-018-6146-9
    A measurement is presented of the Z / γ ∗ → τ τ cross section in pp collisions at s = 13 TeV , using data recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 2.3 fb - 1 . The product of the inclusive cross section and branching fraction is measured to be σ ( pp → Z / γ ∗ +X ) B ( Z / γ ∗ → τ τ ) = 1848 ± 12 ( stat ) ± 67 (syst \,+\,lumi) pb , in agreement with the standard model expectation, computed at next-to-next-to-leading order accuracy in perturbative quantum chromodynamics. The measurement is used to validate new analysis techniques relevant for future measurements of τ lepton production. The measurement also provides the reconstruction efficiency and energy scale for τ decays to hadrons + ν τ final states, determined with respective relative uncertainties of 2.2 and 0.9%.
  13. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2016;76(7):401.
    PMID: 28286414 DOI: 10.1140/epjc/s10052-016-4219-1
    A measurement of the W boson pair production cross section in proton-proton collisions at [Formula: see text] TeV is presented. The data collected with the CMS detector at the LHC correspond to an integrated luminosity of 19.4[Formula: see text]. The [Formula: see text] candidates are selected from events with two charged leptons, electrons or muons, and large missing transverse energy. The measured [Formula: see text] cross section is [Formula: see text], consistent with the standard model prediction. The [Formula: see text] cross sections are also measured in two different fiducial phase space regions. The normalized differential cross section is measured as a function of kinematic variables of the final-state charged leptons and compared with several perturbative QCD predictions. Limits on anomalous gauge couplings associated with dimension-six operators are also given in the framework of an effective field theory. The corresponding 95 % confidence level intervals are [Formula: see text], [Formula: see text], [Formula: see text], in the HISZ basis.
  14. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2016 03 08;76:128.
    PMID: 27471431
    The cross section for [Formula: see text] production in the all-jets final state is measured in pp collisions at a centre-of-mass energy of 8 [Formula: see text] at the LHC with the CMS detector, in data corresponding to an integrated luminosity of 18.4 [Formula: see text]. The inclusive cross section is found to be [Formula: see text] [Formula: see text]. The normalized differential cross sections are measured as a function of the top quark transverse momenta, [Formula: see text], and compared to predictions from quantum chromodynamics. The results are reported at detector, parton, and particle levels. In all cases, the measured top quark [Formula: see text] spectra are significantly softer than theoretical predictions.
  15. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2017;77(3):172.
    PMID: 28408859 DOI: 10.1140/epjc/s10052-017-4718-8
    The cross section of top quark-antiquark pair production in proton-proton collisions at [Formula: see text] is measured by the CMS experiment at the LHC, using data corresponding to an integrated luminosity of 2.2[Formula: see text]. The measurement is performed by analyzing events in which the final state includes one electron, one muon, and two or more jets, at least one of which is identified as originating from hadronization of a b quark. The measured cross section is [Formula: see text], in agreement with the expectation from the standard model.
  16. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2016;76(8):469.
    PMID: 28303084 DOI: 10.1140/epjc/s10052-016-4293-4
    The differential cross section and charge asymmetry for inclusive [Formula: see text] production at [Formula: see text] are measured as a function of muon pseudorapidity. The data sample corresponds to an integrated luminosity of 18.8[Formula: see text] recorded with the CMS detector at the LHC. These results provide important constraints on the parton distribution functions of the proton in the range of the Bjorken scaling variable x from [Formula: see text] to [Formula: see text].
  17. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2016;76(8):451.
    PMID: 28303083 DOI: 10.1140/epjc/s10052-016-4286-3
    A measurement of the double-differential inclusive jet cross section as a function of jet transverse momentum [Formula: see text] and absolute jet rapidity [Formula: see text] is presented. The analysis is based on proton-proton collisions collected by the CMS experiment at the LHC at a centre-of-mass energy of 13[Formula: see text]. The data samples correspond to integrated luminosities of 71 and 44[Formula: see text] for [Formula: see text] and [Formula: see text], respectively. Jets are reconstructed with the anti-[Formula: see text] clustering algorithm for two jet sizes, R, of 0.7 and 0.4, in a phase space region covering jet [Formula: see text] up to 2[Formula: see text] and jet rapidity up to [Formula: see text] = 4.7. Predictions of perturbative quantum chromodynamics at next-to-leading order precision, complemented with electroweak and nonperturbative corrections, are used to compute the absolute scale and the shape of the inclusive jet cross section. The cross section difference in R, when going to a smaller jet size of 0.4, is best described by Monte Carlo event generators with next-to-leading order predictions matched to parton showering, hadronisation, and multiparton interactions. In the phase space accessible with the new data, this measurement provides a first indication that jet physics is as well understood at [Formula: see text] as at smaller centre-of-mass energies.
  18. Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, Brandstetter J, et al.
    Eur Phys J C Part Fields, 2017;77(7):467.
    PMID: 28943793 DOI: 10.1140/epjc/s10052-017-5030-3
    The first measurement of the jet mass [Formula: see text] of top quark jets produced in [Formula: see text] events from pp collisions at [Formula: see text] [Formula: see text] is reported for the jet with the largest transverse momentum [Formula: see text] in highly boosted hadronic top quark decays. The data sample, collected with the CMS detector, corresponds to an integrated luminosity of 19.7[Formula: see text]. The measurement is performed in the lepton+jets channel in which the products of the semileptonic decay [Formula: see text] with [Formula: see text] where [Formula: see text] is an electron or muon, are used to select [Formula: see text] events with large Lorentz boosts. The products of the fully hadronic decay [Formula: see text] with [Formula: see text] are reconstructed using a single Cambridge-Aachen jet with distance parameter [Formula: see text], and [Formula: see text] [Formula: see text]. The [Formula: see text] cross section as a function of [Formula: see text] is unfolded at the particle level and is used to test the modelling of highly boosted top quark production. The peak position of the [Formula: see text] distribution is sensitive to the top quark mass [Formula: see text], and the data are used to extract a value of [Formula: see text] to assess this sensitivity.
  19. Tumasyan A, Adam W, Andrejkovic JW, Bergauer T, Chatterjee S, Dragicevic M, et al.
    Eur Phys J C Part Fields, 2023;83(7):628.
    PMID: 37471210 DOI: 10.1140/epjc/s10052-023-11631-7
    The double differential cross sections of the Drell-Yan lepton pair (ℓ+ℓ-, dielectron or dimuon) production are measured as functions of the invariant mass mℓℓ, transverse momentum pT(ℓℓ), and φη∗. The φη∗ observable, derived from angular measurements of the leptons and highly correlated with pT(ℓℓ), is used to probe the low-pT(ℓℓ) region in a complementary way. Dilepton masses up to 1TeV are investigated. Additionally, a measurement is performed requiring at least one jet in the final state. To benefit from partial cancellation of the systematic uncertainty, the ratios of the differential cross sections for various mℓℓ ranges to those in the Z mass peak interval are presented. The collected data correspond to an integrated luminosity of 36.3fb-1 of proton-proton collisions recorded with the CMS detector at the LHC at a centre-of-mass energy of 13TeV. Measurements are compared with predictions based on perturbative quantum chromodynamics, including soft-gluon resummation.
  20. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2017;77(2):92.
    PMID: 28331430 DOI: 10.1140/epjc/s10052-016-4573-z
    The production cross section of a W boson in association with two b jets is measured using a sample of proton-proton collisions at [Formula: see text] collected by the CMS experiment at the CERN LHC. The data sample corresponds to an integrated luminosity of 19.8[Formula: see text]. The W bosons are reconstructed via their leptonic decays, [Formula: see text], where [Formula: see text] or [Formula: see text]. The fiducial region studied contains exactly one lepton with transverse momentum [Formula: see text] and pseudorapidity [Formula: see text], with exactly two b jets with [Formula: see text] and [Formula: see text] and no other jets with [Formula: see text] and [Formula: see text]. The cross section is measured to be [Formula: see text]+[Formula: see text], in agreement with standard model predictions.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links