Vibrational behaviour of symmetric angle-ply layered circular cylindrical shell filled with quiescent fluid is presented. The equations of motion of cylindrical shell in terms of stress and moment resultants are derived from the first order shear deformation theory. Irrotational of inviscid fluid are expressed as the wave equation. These two equations are coupled. Strain-displacement relations and stress-strain relations are adopted into the equations of motion to obtain the differential equations with displacements and rotational functions. A system of ordinary differential equation is obtained in one variable by assuming the functions in separable form. Spline of order three is applied to approximate the displacement and rotational functions, together with boundary conditions, to get a generalised eigenvalue problem. The eigenvalue problem is solved for eigen frequency parameter and associate eigenvectors of spline coefficients. The study of frequency parameters are analysed using the parameters the thickness ratio, length ratio, angle-ply, properties of material and number of layers under different boundary conditions.
Fast and computationally less complex feature extraction for moving object detection using aerial images from unmanned aerial vehicles (UAVs) remains as an elusive goal in the field of computer vision research. The types of features used in current studies concerning moving object detection are typically chosen based on improving detection rate rather than on providing fast and computationally less complex feature extraction methods. Because moving object detection using aerial images from UAVs involves motion as seen from a certain altitude, effective and fast feature extraction is a vital issue for optimum detection performance. This research proposes a two-layer bucket approach based on a new feature extraction algorithm referred to as the moment-based feature extraction algorithm (MFEA). Because a moment represents the coherent intensity of pixels and motion estimation is a motion pixel intensity measurement, this research used this relation to develop the proposed algorithm. The experimental results reveal the successful performance of the proposed MFEA algorithm and the proposed methodology.
The deep tendon reflex assessments that are essential to the accurate diagnosis of neurological or neuromuscular disorders are conducted subjectively in clinical neurology. Our aim was to assess deep tendon reflexes objectively with a new reflex quantification method.
The statistical predictions of Newtonian and special-relativistic mechanics, which are calculated from an initially Gaussian ensemble of trajectories, are compared for a low-speed scattering system. The comparisons are focused on the mean dwell time, transmission and reflection coefficients, and the position and momentum means and standard deviations. We find that the statistical predictions of the two theories do not always agree as conventionally expected. The predictions are close if the scattering is non-chaotic but they are radically different if the scattering is chaotic and the initial ensemble is well localized in phase space. Our result indicates that for low-speed chaotic scattering, special-relativistic mechanics must be used, instead of the standard practice of using Newtonian mechanics, to obtain empirically-correct statistical predictions from an initially well-localized Gaussian ensemble.
In this paper, we generalize the theory of Brownian motion and the Onsager-Machlup theory of fluctuations for spatially symmetric systems to equilibrium and nonequilibrium steady-state systems with a preferred spatial direction, due to an external force. To do this, we extend the Langevin equation to include a bias, which is introduced by an external force and alters the Gaussian structure of the system's fluctuations. In addition, by solving this extended equation, we provide a physical interpretation for the statistical properties of the fluctuations in these systems. Connections of the extended Langevin equation with the theory of active Brownian motion are discussed as well.
Dielectrophoresis (DEP) is a label-free, accurate, fast, low-cost diagnostic technique that uses the principles of polarization and the motion of bioparticles in applied electric fields. This technique has been proven to be beneficial in various fields, including environmental research, polymer research, biosensors, microfluidics, medicine and diagnostics. Biomedical science research is one of the major research areas that could potentially benefit from DEP technology for diverse applications. Nevertheless, many medical science research investigations have yet to benefit from the possibilities offered by DEP. This paper critically reviews the fundamentals, recent progress, current challenges, future directions and potential applications of research investigations in the medical sciences utilizing DEP technique. This review will also act as a guide and reference for medical researchers and scientists to explore and utilize the DEP technique in their research fields.
The presence of motion artefacts in ECG signals can cause misleading interpretation of cardiovascular status. Recently, reducing the motion artefact from ECG signal has gained the interest of many researchers. Due to the overlapping nature of the motion artefact with the ECG signal, it is difficult to reduce motion artefact without distorting the original ECG signal. However, the application of an adaptive noise canceler has shown that it is effective in reducing motion artefacts if the appropriate noise reference that is correlated with the noise in the ECG signal is available. Unfortunately, the noise reference is not always correlated with motion artefact. Consequently, filtering with such a noise reference may lead to contaminating the ECG signal. In this paper, a two-stage filtering motion artefact reduction algorithm is proposed. In the algorithm, two methods are proposed, each of which works in one stage. The weighted adaptive noise filtering method (WAF) is proposed for the first stage. The acceleration derivative is used as motion artefact reference and the Pearson correlation coefficient between acceleration and ECG signal is used as a weighting factor. In the second stage, a recursive Hampel filter-based estimation method (RHFBE) is proposed for estimating the ECG signal segments, based on the spatial correlation of the ECG segment component that is obtained from successive ECG signals. Real-World dataset is used to evaluate the effectiveness of the proposed methods compared to the conventional adaptive filter. The results show a promising enhancement in terms of reducing motion artefacts from the ECG signals recorded by a cost-effective single lead ECG sensor during several activities of different subjects.
This study deals with the steady laminar slip flow of an incompressible Newtonian fluid in a non-uniform permeable channel under the influence of transverse magnetic field. The reabsorption through the wall is accounted for by considering flux as a function of downstream distance. The non-linear coupled partial differential equations of motion are first transformed into a single fourth order partial differential equation and then solved analytically using Adomain decomposition method. Effects of pertinent parameters on different flow properties are discussed by plotting graphs. Results reveal that magnetic field considerably influences the behavior of flow.
The steady boundary layer flow of a viscous and incompressible fluid over a moving vertical flat plate in an external moving fluid with viscous dissipation is theoretically investigated. Using appropriate similarity variables, the governing system of partial differential equations is transformed into a system of ordinary (similarity) differential equations, which is then solved numerically using a Maple software. Results for the skin friction or shear stress coefficient, local Nusselt number, velocity and temperature profiles are presented for different values of the governing parameters. It is found that the set of the similarity equations has unique solutions, dual solutions or no solutions, depending on the values of the mixed convection parameter, the velocity ratio parameter and the Eckert number. The Eckert number significantly affects the surface shear stress as well as the heat transfer rate at the surface.
The current study aims to verify the existing equations for incipient motion for a rigid rectangular channel. Data from experimental work on incipient motion from a rectangular flume with two different widths, namely 0.3 and 0.6 m, were compared with the critical velocity value predicted by the equations of Novak & Nalluri and El-Zaemey. The equation by El-Zaemey performed better with an average discrepancy ratio value of 1.06 compared with the equation by Novak & Nalluri with an average discrepancy ratio value of 0.87. However, as the sediment deposit thickness increased, the equation by El-Zaemey became less accurate. A plot on the Shields Diagram using the experimental data had shown the significant effect of the sediment deposit thickness where, as the deposit becomes thicker, the dimensionless shear stress θ value also increased. A new equation had been proposed by incorporating the sediment deposit thickness. The new equation gave improved prediction with an average discrepancy ratio value of 1.02.
This paper establishes a novel control strategy for a nonlinear bilateral macro-micro teleoperation system with time delay. Besides position and velocity signals, force signals are additionally utilized in the control scheme. This modification significantly improves the poor transparency during contact with the environment. To eliminate external force measurement, a force estimation algorithm is proposed for the master and slave robots. The closed loop stability of the nonlinear micro-micro teleoperation system with the proposed control scheme is investigated employing the Lyapunov theory. Consequently, the experimental results verify the efficiency of the new control scheme in free motion and during collision between the slave robot and the environment of slave robot with environment, and the efficiency of the force estimation algorithm.
By applying a hexagon-diamond search (HDS) method to an ultrasound image, the path of an object is able to be monitored by extracting images into macro-blocks, thereby achieving image redundancy is reduced from one frame to another, and also ascertaining the motion vector within the parameters searched. The HDS algorithm uses six search points to form the six sides of the hexagon pattern, a centre point, and a further four search points to create diamond pattern within the hexagon that clarifies the focus of the subject area.
The newtonian and special-relativistic statistical predictions for the mean, standard deviation and probability density function of the position and momentum are compared for the periodically-delta-kicked particle at low speed. Contrary to expectation, we find that the statistical predictions, which are calculated from the same parameters and initial gaussian ensemble of trajectories, do not always agree if the initial ensemble is sufficiently well-localized in phase space. Moreover, the breakdown of agreement is very fast if the trajectories in the ensemble are chaotic, but very slow if the trajectories in the ensemble are non-chaotic. The breakdown of agreement implies that special-relativistic mechanics must be used, instead of the standard practice of using newtonian mechanics, to correctly calculate the statistical predictions for the dynamics of a low-speed system.
Spatio-temporal datasets are a collection of datasets where data can vary in both space and time. Theoretically, such datasets can be considered as continuous and discrete. For example, specification of the function, F: Ed T Rn, where Ed denotes d-dimensional Euclidean space, T = R* ∩ {} the domain of time and Rn an n-dimensional scalar field. Examples of such data sets include time-varying simulation results, film and videos, time-varying medical datasets, geometry models with motion or deformation, meteorological measurements, and many more. It is therefore highly desirable to use visualisation to summarize meaningful information in higher dimensional spatio-temporal datasets. Our aim is to conceive an efficient visual study to facilitate scientists in identifying temporal association among complex and chaotic atom movements in ion trajectories. An application that uses a streamline for spatial motion of ion trajectories and Colour Number Coding Scheme for temporal encoding of high degree of timeline events among mobile ions is proposed. With an anthology of the visual examples, it was revealed that this application would be beneficial for scientists to visually mine any 3D spatio-temporal dataset.
Linear stability analysis was used to investigate the onset of Marangoni convection in a two-layer system. The system comprised a saturated porous layer over which was a layer of the same fluid. The fluid was heated from below and the upper free surface was deformable. At the interface between the fluid and the porous layer, the Beavers-Joseph slip condition was used and in the porous medium the Darcy law was employed to describe the flow. Predictions for the onset of convection were obtained from the analysis by the perturbation technique. The effect of surface deformation and depth ratio, z (which is equal to the depth of the fluid layer/depth of the porous layer) on the onset of fluid motion was studied in detail.
The multi-scale and nonlinear nature of the ocean dynamics dramatically affects the spreading of matter, like pollutants, marine litter, etc., of physical and chemical seawater properties, and the biological connectivity inside and among different basins. Based on the Finite-Scale Lyapunov Exponent analysis of the largest available near-surface Lagrangian data set from the Global Drifter Program, our results show that, despite the large variety of flow features, relative dispersion can ultimately be described by a few parameters common to all ocean sub-basins, at least in terms of order of magnitude. This provides valuable information to undertake Lagrangian dispersion studies by means of models and/or of observational data. Moreover, our results show that the relative dispersion rates measured at submesoscale are significantly higher than for large-scale dynamics. Auxiliary analysis of high resolution GPS-tracked drifter hourly data as well as of the drogued/undrogued status of the buoys is provided in support of our conclusions. A possible application of our study, concerning reverse drifter motion and error growth analysis, is proposed relatively to the case of the missing Malaysia Airlines MH370 aircraft.
The ability of a robot to plan its own motion seems pivotal to its autonomy, and that is why the motion planning has become part and parcel of modern intelligent robotics. In this paper, about 100 research are reviewed and briefly described to identify and classify the amount of the existing work for each motion planning approach. Meanwhile, around 200 research were used to determine the percentage of the application of each approach. The paper includes comparative tables and charts showing the application frequency of each approach in the last 30 years. Finally, some open areas and challenging topics are presented based on the reviewed papers.
This paper presents investigations into the development of control schemes for end-point vibration
suppression and input tracking of a flexible manipulator. A constrained planar single-link flexible manipulator is considered and the dynamic model of the system is derived using the assumed mode method. To study the effectiveness of the controllers, a Linear Quadratic Regulator (LQR) was initially developed for control of rigid body motion. This is then extended to incorporate a noncollocated PID controller and a feedforward controller based on input shaping techniques to control vibration (flexible motion) of the system. For feedforward controller, positive and modified specified negative amplitude (SNA) input shapers are proposed and designed based on the properties of the system. Results from the simulation of the manipulator responses with the controllers are presented in time and frequency domains. The performances of the control schemes are assessed in terms of level of vibration reduction, input tracking capability and time response specifications. Finally, a comparative assessment of the control techniques is presented and discussed.
This paper reviews recent progress in the measurement and modelling of stochastic electromagnetic fields, focusing on propagation approaches based on Wigner functions and the method of moments technique. The respective propagation methods are exemplified by application to measurements of electromagnetic emissions from a stirred, cavity-backed aperture. We discuss early elements of statistical electromagnetics in Heaviside's papers, driven mainly by an analogy of electromagnetic wave propagation with heat transfer. These ideas include concepts of momentum and directionality in the realm of propagation through confined media with irregular boundaries. We then review and extend concepts using Wigner functions to propagate the statistical properties of electromagnetic fields. We discuss in particular how to include polarization in this formalism leading to a Wigner tensor formulation and a relation to an averaged Poynting vector.This article is part of the theme issue 'Celebrating 125 years of Oliver Heaviside's 'Electromagnetic Theory''.
Robotic navigation has remained an open issue through the last two decades. Mobile robot
is required to navigate safely to goal location in presence of obstacles. Recently the use of mobile
robot in unknown dynamic environment has significantly increased. The aim of this paper is to offer a
comprehensive review over different approaches to mobile robots in dynamic environments,
particularly on how they solve many issues that face the researchers recently. This paper also explains
the advantages and drawbacks of each reviewed paper. The authors decide to categorize these articles
based on the entire content of each paper into ten common challenges which have been discussed in
this paper, including: traveling distance, traveling time, safety, motion control, smooth path, future
prediction, stabilization, competence, precision, and low computation cost. Finally, some open areas
and challenging topics are offered according to the articles mentioned.