Displaying publications 81 - 84 of 84 in total

Abstract:
Sort:
  1. Campa D, Pastore M, Gentiluomo M, Talar-Wojnarowska R, Kupcinskas J, Malecka-Panas E, et al.
    Oncotarget, 2016 08 30;7(35):57011-57020.
    PMID: 27486979 DOI: 10.18632/oncotarget.10935
    The CDKN2A (p16) gene plays a key role in pancreatic cancer etiology. It is one of the most commonly somatically mutated genes in pancreatic cancer, rare germline mutations have been found to be associated with increased risk of developing familiar pancreatic cancer and CDKN2A promoter hyper-methylation has been suggested to play a critical role both in pancreatic cancer onset and prognosis. In addition several unrelated SNPs in the 9p21.3 region, that includes the CDNK2A, CDNK2B and the CDNK2B-AS1 genes, are associated with the development of cancer in various organs. However, association between the common genetic variability in this region and pancreatic cancer risk is not clearly understood. We sought to fill this gap in a case-control study genotyping 13 single nucleotide polymorphisms (SNPs) in 2,857 pancreatic ductal adenocarcinoma (PDAC) patients and 6,111 controls in the context of the Pancreatic Disease Research (PANDoRA) consortium. We found that the A allele of the rs3217992 SNP was associated with an increased pancreatic cancer risk (ORhet=1.14, 95% CI 1.01-1.27, p=0.026, ORhom=1.30, 95% CI 1.12-1.51, p=0.00049). This pleiotropic variant is reported to be a mir-SNP that, by changing the binding site of one or more miRNAs, could influence the normal cell cycle progression and in turn increase PDAC risk. In conclusion, we observed a novel association in a pleiotropic region that has been found to be of key relevance in the susceptibility to various types of cancer and diabetes suggesting that the CDKN2A/B locus could represent a genetic link between diabetes and pancreatic cancer risk.
  2. Tchervenkov CI, Herbst C, Jacobs JP, Al-Halees Z, Edwin F, Dearani JA, et al.
    World J Pediatr Congenit Heart Surg, 2021 05;12(3):394-405.
    PMID: 33942697 DOI: 10.1177/21501351211003520
    The optimal training of the highly specialized congenital heart surgeon is a long and complex process, which is a significant challenge in most parts of the world. The World Society for Pediatric and Congenital Heart Surgery (WSPCHS) has established the Global Council on Education for Congenital Heart Surgery as a nonprofit organization with the goal of assessing current training and certification and ultimately establishing standardized criteria for the training, evaluation, and certification of congenital heart surgeons around the world. The Global Council and the WSPCHS have reviewed the present status of training and certification for congenital cardiac surgery around the world. There is currently lack of consensus and standardized criteria for training in congenital heart surgery, with significant disparity between continents and countries. This represents significant obstacles to international job mobility of competent congenital heart surgeons and to the efforts to improve the quality of care for patients with Congenital Heart Disease worldwide. The purpose of this article is to summarize and document the present state of training and certification in congenital heart surgery around the world.
  3. Campa D, Rizzato C, Stolzenberg-Solomon R, Pacetti P, Vodicka P, Cleary SP, et al.
    Int J Cancer, 2015 Nov 01;137(9):2175-83.
    PMID: 25940397 DOI: 10.1002/ijc.29590
    A small number of common susceptibility loci have been identified for pancreatic cancer, one of which is marked by rs401681 in the TERT-CLPTM1L gene region on chromosome 5p15.33. Because this region is characterized by low linkage disequilibrium, we sought to identify whether additional single nucleotide polymorphisms (SNPs) could be related to pancreatic cancer risk, independently of rs401681. We performed an in-depth analysis of genetic variability of the telomerase reverse transcriptase (TERT) and the telomerase RNA component (TERC) genes, in 5,550 subjects with pancreatic cancer and 7,585 controls from the PANcreatic Disease ReseArch (PANDoRA) and the PanScan consortia. We identified a significant association between a variant in TERT and pancreatic cancer risk (rs2853677, odds ratio = 0.85; 95% confidence interval = 0.80-0.90, p = 8.3 × 10(-8)). Additional analysis adjusting rs2853677 for rs401681 indicated that the two SNPs are independently associated with pancreatic cancer risk, as suggested by the low linkage disequilibrium between them (r(2) = 0.07, D' = 0.28). Three additional SNPs in TERT reached statistical significance after correction for multiple testing: rs2736100 (p = 3.0 × 10(-5) ), rs4583925 (p = 4.0 × 10(-5) ) and rs2735948 (p = 5.0 × 10(-5) ). In conclusion, we confirmed that the TERT locus is associated with pancreatic cancer risk, possibly through several independent variants.
  4. Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, et al.
    Autophagy, 2021 Jan;17(1):1-382.
    PMID: 33634751 DOI: 10.1080/15548627.2020.1797280
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links