Displaying publications 81 - 88 of 88 in total

Abstract:
Sort:
  1. Liong MT, Dunshea FR, Shah NP
    Br J Nutr, 2007 Oct;98(4):736-44.
    PMID: 17490507
    The aim of this study was to evaluate the effect of a synbiotic containing Lactobacillus acidophilus ATCC 4962, fructooligosaccharide, inulin and mannitol on plasma lipid profiles and erythrocyte membrane properties in hypercholesterolaemic pigs on high- and low-fat diets. Twenty-four white male Landrace pigs were randomly allocated to four treatment groups for 8 weeks (n 6). Treatment factors were the supplementation of synbiotic (with and without) and dietary fat (5 and 15 %). The supplementation of synbiotic reduced plasma total cholesterol (P = 0.001), TAG (P = 0.002) and LDL-cholesterol (P = 0.045) for both dietary fats. A higher concentration of esterified-cholesterol in HDL of pigs supplemented with synbiotic than the control regardless of dietary fat (P = 0.036) indicated that cholesterol was reduced in the form of cholesteryl esters. Reduced concentration of cholesteryl esters (P < 0.001) and increased concentration of TAG (P = 0.042) in LDL of pigs on synbiotic suggested that LDL-cholesterol was reduced via the hydrolysis of smaller and denser LDL particles. The erythrocytes of pigs without any synbiotic showed more prevalence of spur cells than those given the synbiotic, as supported by the higher cholesterol: phospholipid ratio in erythrocytes (P = 0.001). Also, membrane fluidity and rigidity were improved as supported by the decreased fluorescence anisotropies in the Hb-free erythrocyte membrane of pigs given synbiotic (P < 0.001). The administration of the synbiotic reduced plasma TAG, total cholesterol and LDL-cholesterol in hypercholesterolaemic pigs, possibly in the form of cholesteryl esters, via the interrelated pathways of lipid transporters (VLDL, LDL and HDL). The synbiotic also reduced deformation of erythrocytes via improved membrane fluidity and permeability.
  2. Favaro L, Campanaro S, Fugaban JII, Treu L, Jung ES, d'Ovidio L, et al.
    Benef Microbes, 2023 Mar 14;14(1):57-72.
    PMID: 36815495 DOI: 10.3920/BM2022.0067
    Bacteriocins produced by lactic acid bacteria are proteinaceous antibacterial metabolites that normally exhibit bactericidal or bacteriostatic activity against genetically closely related bacteria. In this work, the bacteriocinogenic potential of Pediococcus pentosaceus strain ST58, isolated from oral cavity of a healthy volunteer was evaluated. To better understand the biological role of this strain, its technological and safety traits were deeply investigated through a combined approach considering physiological, metabolomic and genomic properties. Three out of 14 colonies generating inhibition zones were confirmed to be bacteriocin producers and, according to repPCR and RAPD-PCR, differentiation assays, and 16S rRNA sequencing it was confirmed to be replicates of the same strain, identified as P. pentosaceus, named ST58. Based on multiple isolation of the same strain (P. pentosaceus ST58) over the 26 weeks in screening process for the potential bacteriocinogenic strains from the oral cavity of the same volunteer, strain ST58 can be considered a persistent component of oral cavity microbiota. Genomic analysis of P. pentosaceus ST58 revealed the presence of operons encoding for bacteriocins pediocin PA-1 and penocin A. The produced bacteriocin(s) inhibited the growth of Listeria monocytogenes, Enterococcus spp. and some Lactobacillus spp. used to determine the activity spectrum. The highest levels of production (6400 AU/ml) were recorded against L. monocytogenes strains after 24 h of incubation and the antimicrobial activity was inhibited after treatment of the cell-free supernatants with proteolytic enzymes. Noteworthy, P. pentosaceus ST58 also presented antifungal activity and key metabolites potentially involved in these properties were identified. Overall, this strain can be of great biotechnological interest towards the development of effective bio-preservation cultures as well as potential health promoting microbes.
  3. Fugaban JII, Dioso CM, Choi GH, Bucheli JEV, Liong MT, Holzapfel WH, et al.
    Probiotics Antimicrob Proteins, 2024 Feb;16(1):35-52.
    PMID: 36445687 DOI: 10.1007/s12602-022-10017-7
    The aim of this project was to screen for bacteriocinogenic Bacillus strains with activity versus Staphylococcus spp. with future application in formulation of pharmaceutical antimicrobial preparations. Putative bacteriocinogenic strains, isolated and pre-identified as Bacillus spp. were selected for future study and differentiated based on repPCR and identified as Bacillus subtilis for strains ST826CD and ST829CD, Bacillus subtilis subsp. stercoris for strain ST794CD, Bacillus subtilis subsp. spizizenii for strain ST824CD, Bacillus velezensis for strain ST796CD, and Bacillus tequilensis for strain ST790CD. Selected strains were evaluated regarding their safety/virulence, beneficial properties, and potential production of antimicrobials based on biomolecular and physiological approves. Expressed bacteriocins were characterized regarding their proteinaceous nature, stability at different levels of pH, temperatures, and the presence of common chemicals applied in bacterial cultivation and bacteriocin purification. Dynamic of bacterial growth, acidification, and cumulation of produced bacteriocins and some aspects of the bacteriocins mode of action were evaluated. Based on obtained results, isolation and application of expressed antimicrobials can be realistic scenario for treatment of some staphylococcal associated infections. Appropriate biotechnological approaches need to be developed for cost effective production, isolation, and purification of expressed antimicrobials by studied Bacillus strains.
  4. Liu YW, Liong MT, Tsai YC
    J Microbiol, 2018 Sep;56(9):601-613.
    PMID: 30141154 DOI: 10.1007/s12275-018-8079-2
    Lactobacillus plantarum is a non-gas-producing lactic acid bacterium that is generally regarded as safe (GRAS) with Qualified Presumption of Safety (QPS) status. Although traditionally used for dairy, meat and vegetable fermentation, L. plantarum is gaining increasing significance as a probiotic. With the newly acclaimed gut-heart-brain axis, strains of L. plantarum have proven to be a valuable species for the development of probiotics, with various beneficial effects on gut health, metabolic disorders and brain health. In this review, the classification and taxonomy, and the relation of these with safety aspects are introduced. Characteristics of L. plantarum to fulfill the criteria as a probiotic are discussed. Emphasis are also given to the beneficial functions of L. plantarum in gut disorders such as inflammatory bowel diseases, metabolic syndromes, dyslipidemia, hypercholesteromia, obesity, and diabetes, and brain health aspects involving psychological disorders.
  5. Liao JF, Hsu CC, Chou GT, Hsu JS, Liong MT, Tsai YC
    Benef Microbes, 2019 Apr 19;10(4):425-436.
    PMID: 30882243 DOI: 10.3920/BM2018.0077
    Maternal separation (MS) has been developed as a model for inducing stress and depression in studies using rodents. The concept of the gut-brain axis suggests that gut health is essential for brain health. Here, we present the effects of administration of a probiotic, Lactobacillus paracasei PS23 (PS23), to MS mice against psychological traits including anxiety and depression. The administration of live and heat-killed PS23 cells showed positive behavioural effects on MS animals, where exploratory tendencies and mobility were increased in behavioural tests, indicating reduced anxiety and depression compared to the negative control mice (P<0.05). Mice administered with both live and heat-killed PS23 cells also showed lower serum corticosterone levels accompanied by higher serum anti-inflammatory interleukin 10 (IL-10) levels, compared to MS separated mice (P<0.05), indicating a stress-elicited response affiliated with increased immunomodulatory properties. Assessment of neurotransmitters in the brain hippocampal region revealed that PS23 affected the concentrations of dopaminergic metabolites differently than the control, suggesting that PS23 may have improved MS-induced stress levels via neurotransmitter pathways, such as dopamine or other mechanisms not addressed in the current study. Our study illustrates the potential of a probiotic in reversing abnormalities induced by early life stress and could be an alternative for brain health along the gut-brain axis.
  6. Wang MC, Zaydi AI, Lin WH, Lin JS, Liong MT, Wu JJ
    Probiotics Antimicrob Proteins, 2020 09;12(3):840-850.
    PMID: 31749128 DOI: 10.1007/s12602-019-09615-9
    The dairy products remain as the largest reservoir for isolation of probiotic microorganisms. While probiotics have been immensely reported to exert various health benefits, it is also a common notion that these health potentials are strain and host dependent, leading to the need of more human evidence based on specific strains, health targets, and populations. This randomized, single-blind, and placebo-controlled human study aimed to evaluate the potential benefits of putative probiotic strains isolated from kefir on gastrointestinal parameters in fifty-six healthy adults. The consumption of AB-kefir (Bifidobacterium longum, Lactobacillus acidophilus, L. fermentum, L. helveticus, L. paracasei, L. rhamnosus, and Streptococcus thermophiles; total 10 log CFU/sachet) daily for 3 week reduced symptoms of abdominal pain, bloating (P = 0.014), and appetite (P = 0.041) in male subjects as compared to the control. Gut microbiota distribution profiles were shifted upon consumption of AB-kefir compared to baseline, where the abundance of bifidobacteria was increased in male subjects and maintained upon cessation of AB-kefir consumption. The consumption of AB-kefir also increased gastrointestinal abundance of total anaerobes (P = 0.038) and total bacterial (P = 0.049) in female subjects compared to the control after 3 weeks. Our results indicated that AB-kefir could potentially be developed as a natural strategy to improve gastrointestinal functions in adults.
  7. Fung WY, Liong MT, Yuen KH
    J Pharm Pharmacol, 2016 Feb;68(2):159-69.
    PMID: 26730452 DOI: 10.1111/jphp.12502
    OBJECTIVES: This study aimed to prepare Coenzyme Q10 (CoQ10) microparticles using electrospraying technology, and evaluate the in-vitro properties and in-vivo oral bioavailability.
    KEY FINDINGS: Electrospraying was successfully used to prepare CoQ10 to enhance its solubility and dissolution properties. In-vitro evaluation of the electrosprayed microparticles showed bioavailability-enhancing properties such as reduced crystallinity and particle size. The formulation was evaluated using dissolution study and in-vivo oral bioavailability using rat model. The dissolution study revealed enhanced dissolution properties of electrosprayed microparticles compared with physical mixture and raw material. The absorption profiles showed increasing mean plasma levels CoQ10 in the following order: raw material < physical mixture < electrosprayed microparticles.
    CONCLUSION: Based on the findings in this study, electrospraying is a highly prospective technology to produce functional nano- and micro-structures as delivery vehicles for drugs with poor oral bioavailability due to rate-limiting solubility.
  8. Ma T, Jin H, Kwok LY, Sun Z, Liong MT, Zhang H
    Neurobiol Stress, 2021 May;14:100294.
    PMID: 33511258 DOI: 10.1016/j.ynstr.2021.100294
    Stress has been shown to disturb the balance of human intestinal microbiota and subsequently causes mental health problems like anxiety and depression. Our previous study showed that ingesting the probiotic strain, Lactobacillus (L.) plantarum P-8, for 12 weeks could alleviate stress and anxiety of stressed adults. The current study was a follow-up work aiming to investigate the functional role of the gut metagenomes in the observed beneficial effects. The fecal metagenomes of the probiotic (n = 43) and placebo (n = 36) receivers were analyzed in depth. The gut microbiomes of the placebo group at weeks 0 and 12 showed a significantly greater Aitchison distance (P 
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links