Displaying publications 1 - 20 of 21 in total

Abstract:
Sort:
  1. Ahmad A, Hamid R, Dada AC, Usup G
    Probiotics Antimicrob Proteins, 2013 Sep;5(3):165-75.
    PMID: 26782985 DOI: 10.1007/s12602-013-9140-4
    Bacteriocin-producing Pseudomonas putida strain FStm2 isolated from shark showed broad range of antibacterial activity against all pathogens tested except Bacillus subtilis ATCC11774, MRSA N32064, Proteus mirabilis ATCC12453, Enterococcus faecalis ATCC14506, Salmonella typhimurium ATCC51312, Salmonella mutan ATCC25175, and Aeromonas hydrophila Wbf314. Of the three growth media tested in this study, TSB was observed to support the bacteriocin activity the most. While the highest bacteriocin activity was observed for media supplemented with 1 % NaCl, there was an observed reduction in bacteriocin activity with increasing salt concentration. Although the least bacteriocin activity was observed for marine broth, addition of increasing amounts of tryptone, glucose, or yeast extract increased bacteriocin activity. This was, however, contrary to the effect observed when MgSO4 and MnSO4 were added as supplements. In the presence of α-amylase, lipase, DNase, and RNase, a positive effect on bacteriocin production was observed. Proteinase K strongly inhibited bacteriocin production. Furthermore, the bacteriocins produced were heat stable within the temperature range of 30-70 °C. Bacteriocin activity also was not affected within a wide pH range of 3-9. Exposure to detergents did not inhibit the activity of the bacteriocin at the concentrations tested. Instead, a positive effect on the relative activity of produced bacteriocin was observed as sodium dodecyl sulfate (SDS), EDTA, and Tween 20 at 1 % concentration all improved bacteriocin activity when the cell-free supernatant was tested against Serratia marcescens ATCC 13880. The bacteriocin was purified by ammonium sulfate precipitation and gel filtration on a Superdex-200 column. SDS-PAGE analysis of the partially purified bacteriocin revealed an apparent molecular weight of ~32 kDa.
  2. Tan YN, Matthews KR, Di R, Ayob MK
    Probiotics Antimicrob Proteins, 2012 Mar;4(1):59-65.
    PMID: 26781737 DOI: 10.1007/s12602-012-9091-1
    Palm kernel expeller (PKE), the by-product derived from the palm kernel oil milling industry, is commonly added to ruminant feed as a source of protein. Recent research has demonstrated that the enzymatically hydrolyzed protein is inhibitory to spore-forming bacteria including Bacillus cereus. The trypsin-hydrolyzed PKE peptide appears to disrupt the membrane integrity and inhibit the intracellular macromolecule metabolism of B. cereus. The addition of the PKE peptide (350 and 700 μg/ml) to B. cereus cultures triggered the efflux of K(+) and caused the depletion of the intracellular ATP. However, no proportional increase in cell's extracellular ATP was observed. Analysis of the biosynthesis of macromolecules demonstrated that RNA was affected by the PKE peptide. Results of this study suggest that the PKE peptide is bacteriostatic interfering with membrane integrity and forming membrane pores permitting the efflux of K(+) and interferes with intracellular biopolymer synthesis.
  3. Zarfeshani A, Khaza'ai H, Mohd Ali R, Hambali Z, Wahle KW, Mutalib MS
    Probiotics Antimicrob Proteins, 2011 Dec;3(3-4):168-74.
    PMID: 26781677 DOI: 10.1007/s12602-011-9080-9
    It has been demonstrated that probiotic supplementation has positive effects in several murine models of disease through influences on host immune responses. This study examined the effect of Lactobacillus casei strain Shirota (L. casei Shirota) on the blood glucose, C-reactive protein (CRP), Interleukin-6 (IL-6), Interleukin-4 (IL-4), and body weight among STZ-induced diabetic rats. Diabetes mellitus was induced by streptozotocin (STZ, 50 mg/kg BW) in male Sprague-Dawley rats. Streptozotocin caused a significant increase in the blood glucose levels, CRP, and IL-6. L. casei Shirota supplementation lowered the CRP and IL-6 levels but had no significant effect on the blood glucose levels, body weight, or IL-4. Inflammation was determined histologically. The presence of the innate immune cells was not detectable in the liver of L. casei Shirota-treated hyperglycemic rats. The probiotic L. casei Shirota significantly lowered blood levels of pro-inflammatory cytokines (IL-6, CRP) and neutrophils in diabetic rats, showing a lower risk of diabetes mellitus and its complications.
  4. Ong JS, Taylor TD, Yong CC, Khoo BY, Sasidharan S, Choi SB, et al.
    Probiotics Antimicrob Proteins, 2020 03;12(1):125-137.
    PMID: 30659503 DOI: 10.1007/s12602-018-9505-9
    This study aimed to elucidate the targets and mechanisms of anti-staphylococcal effects from bioactive metabolites produced by lactic acid bacteria. We aimed to better understand the safety and efficacy of these bioactive metabolites in in vivo systems, typically at topical sites. The cell-free supernatant and protein-rich fraction from Lactobacillus plantarum USM8613 inhibited staphyloxanthin biosynthesis, reduced (p 
  5. Lew LC, Hor YY, Jaafar MH, Lau AS, Khoo BY, Sasidharan S, et al.
    Probiotics Antimicrob Proteins, 2020 06;12(2):545-562.
    PMID: 31301059 DOI: 10.1007/s12602-019-09545-6
    Both aging and diet play an important role in influencing the gut ecosystem. Using premature senescent rats induced by D-galactose and fed with high-fat diet, this study aims to investigate the effects of different potential probiotic strains on the dynamic changes of fecal microbiome and metabolites. In this study, male Sprague-Dawley rats were fed with high-fat diet and injected with D-galactose for 12 weeks to induce aging. The effect of Lactobacillus plantarum DR7, L. fermentum DR9, and L. reuteri 8513d administration on the fecal microbiota profile, short-chain fatty acids, and water-soluble compounds were analyzed. It was found that the administration of the selected strains altered the gut microbiota diversity and composition, even at the phylum level. The fecal short-chain fatty acid content was also higher in groups that were administered with the potential probiotic strains. Analysis of the fecal water-soluble metabolites revealed that administration of L. plantarum DR7 and L. reuteri 8513d led to higher fecal content of compounds related to amino acid metabolism such as tryptophan, leucine, tyrosine, cysteine, methionine, valine, and lysine; while administration of L. fermentum DR9 led to higher prevalence of compounds related to carbohydrate metabolism such as erythritol, xylitol, and arabitol. In conclusion, it was observed that different strains of lactobacilli can cause difference alteration in the gut microbiota and the metabolites, suggesting the urgency to explore the specific metabolic impact of specific strains on the host.
  6. El-Baz AF, El-Enshasy HA, Shetaia YM, Mahrous H, Othman NZ, Yousef AE
    Probiotics Antimicrob Proteins, 2018 Mar;10(1):77-88.
    PMID: 28634812 DOI: 10.1007/s12602-017-9291-9
    A new yeast strain with promising probiotic traits was isolated from the Red Sea water samples. The isolate (YMHS) was subjected to genetic characterization and identified as Cryptococcus sp. Nucleotide sequence analysis of the rRNA gene internal transcribed spacer regions showed 95% sequence similarity between the isolate and Cryptococcus albidus. Cryptococcus sp. YMHS exhibited desirable characteristics of probiotic microorganisms; it has tolerance to low pH in simulated gastric juice, resistance to bile salts, hydrophobic characteristics, broad antimicrobial activity, and in vitro ability to degrade cholesterol. The isolate grew well in a semi-defined medium composed of yeast extract, glucose, KH2PO4, (NH4)2SO4, and MgSO4, yielding cell mass of 2.32 and 5.82 g/l in shake flask and in bioreactor cultures, respectively. Fed-batch cultivation, with controlled pH, increased the biomass gradually in culture, reaching 28.5 g/l after 32 h cultivation. Beside the feasible use as a probiotic, the new strain also could be beneficial in the development of functional foods or novel food preservatives. To our knowledge, this is the first report of yeast with probiotic properties isolated from the Red Sea.
  7. Fareez IM, Lim SM, Zulkefli NAA, Mishra RK, Ramasamy K
    Probiotics Antimicrob Proteins, 2018 09;10(3):543-557.
    PMID: 28493103 DOI: 10.1007/s12602-017-9284-8
    The susceptibility of probiotics to low pH and high temperature has limited their use as nutraceuticals. In this study, enhanced protection of probiotics via microencapsulation was achieved. Lactobacillus plantarum LAB12 were immobilised within polymeric matrix comprised of alginate (Alg) with supplementation of cellulose derivatives (methylcellulose (MC), sodium carboxymethyl cellulose (NaCMC) or hydroxypropyl methylcellulose (HPMC)). L. plantarum LAB12 encapsulated in Alg-HPMC(1.0) and Alg-MC(1.0) elicited improved survivability (91%) in simulated gastric conditions and facilitated maximal release (∼100%) in simulated intestinal condition. Alg-HPMC(1.0) and Alg-MC(1.0) significantly reduced (P 7 log CFU g-1. Alg-MC and Alg-HPMC improved the survival of LAB12 against simulated gastric condition (9.24 and 9.55 log CFU g-1, respectively), temperature up to 90 °C (9.54 and 9.86 log CFU g-1, respectively) and 4-week of storage at 4 °C (8.61 and 9.23 log CFU g-1, respectively) with sustained release of probiotic in intestinal condition (>9 log CFU g-1). These findings strongly suggest the potential of cellulose derivatives supplemented Alg bead as protective micro-transport for probiotic strains. They can be safely incorporated into new functional food or nutraceutical products.
  8. Fareez IM, Lim SM, Ramasamy K
    Probiotics Antimicrob Proteins, 2019 06;11(2):447-459.
    PMID: 30003409 DOI: 10.1007/s12602-018-9442-7
    Lactic acid bacteria (LAB) with probiotic properties are useful options for prophylactic and therapeutic applications against gastrointestinal diseases. The safety of probiotics should, however, be verified before incorporation into food or drinks. The present study had encapsulated Lactobacillus plantarum LAB12 within microcapsules that could withstand extremely high temperature (up to 100 °C) during pelletisation. The microencapsulated LAB12 were then tested for their acute (single dosing) and sub-chronic (a 90-day feeding) toxicity. For acute toxicity study, six male Sprague-Dawley rats were being administered with a single dose of freeze-dried microencapsulated LAB12 at 11 log CFU/kg BW through oral gavage. No clear treatment-related effects were observed after 14 days. For sub-chronic toxicity study, rodents were randomly divided into four groups (6 rats/sex/group) and treated with 0, 8, 9 and 10 log CFU/kg BW of microencapsulated LAB12 in pellet form. No mortality or treatment-related findings were observed in terms of clinical body weight, water intake, or food consumption. No treatment-related adverse effects were observed in blood and tissue samples. The no-observed-adverse-effect-level (NOAEL) for microencapsulated LAB12 was 2.5 × 1010 CFU/kg BW for both genders. These results imply that LAB12 are likely non-pathogenic and non-toxic.
  9. Wang MC, Zaydi AI, Lin WH, Lin JS, Liong MT, Wu JJ
    Probiotics Antimicrob Proteins, 2020 09;12(3):840-850.
    PMID: 31749128 DOI: 10.1007/s12602-019-09615-9
    The dairy products remain as the largest reservoir for isolation of probiotic microorganisms. While probiotics have been immensely reported to exert various health benefits, it is also a common notion that these health potentials are strain and host dependent, leading to the need of more human evidence based on specific strains, health targets, and populations. This randomized, single-blind, and placebo-controlled human study aimed to evaluate the potential benefits of putative probiotic strains isolated from kefir on gastrointestinal parameters in fifty-six healthy adults. The consumption of AB-kefir (Bifidobacterium longum, Lactobacillus acidophilus, L. fermentum, L. helveticus, L. paracasei, L. rhamnosus, and Streptococcus thermophiles; total 10 log CFU/sachet) daily for 3 week reduced symptoms of abdominal pain, bloating (P = 0.014), and appetite (P = 0.041) in male subjects as compared to the control. Gut microbiota distribution profiles were shifted upon consumption of AB-kefir compared to baseline, where the abundance of bifidobacteria was increased in male subjects and maintained upon cessation of AB-kefir consumption. The consumption of AB-kefir also increased gastrointestinal abundance of total anaerobes (P = 0.038) and total bacterial (P = 0.049) in female subjects compared to the control after 3 weeks. Our results indicated that AB-kefir could potentially be developed as a natural strategy to improve gastrointestinal functions in adults.
  10. Lim SY, Loo KW, Wong WL
    Probiotics Antimicrob Proteins, 2020 09;12(3):906-917.
    PMID: 31773414 DOI: 10.1007/s12602-019-09616-8
    The outbreak of acute hepatopancreatic necrosis disease (AHPND) has caused great economic losses to the shrimp culture sector. However, the use of antibiotics to fight this disease has resulted in negative impacts on human health and the environment. Thus, the use of natural alternatives to antibiotics may be a better solution. In this study, four Bacillus species obtained from the guts of shrimps (Fenneropenaeus penicillatus and Penaeus monodon) showed antimicrobial activity against the AHPND-causing Vibrio parahaemolyticus strain 3HP using the cross-streaking and agar spot methods. Two of the Bacillus isolates, B2 and BT, also showed good probiotic properties, exhibiting tolerance to bile, good adhesion to shrimp mucus, non-hemolytic, susceptibility to antibiotics and being safe towards hosts. Moreover, a seaweed-probiotic blend (a combination of Bacillus B2 and 20 mg/ml of the red seaweed Gracilaria sp.) exhibited synergistic in vitro inhibition against V. parahaemolyticus strain 3HP, with an observed inhibition zone of 5.0 mm. The broth co-culture experiment results further indicated that the seaweed-probiotic blend inhibited V. parahaemolyticus through competitive exclusion. The in vivo challenge trials also confirmed that this seaweed-probiotic blend significantly reduced the mortality of shrimps post-challenge with the AHPND-causing V. parahaemolyticus strain 3HP (p < 0.05) compared to the negative control (mortality rate = 13.88% vs 72.19%). Thus, this seaweed-probiotic blend may serve as an alternative to antibiotics in controlling the outbreak of AHPND.
  11. Jawan R, Abbasiliasi S, Mustafa S, Kapri MR, Halim M, Ariff AB
    Probiotics Antimicrob Proteins, 2021 04;13(2):422-440.
    PMID: 32728855 DOI: 10.1007/s12602-020-09690-3
    Determination of a microbial strain for the joining into sustenance items requires both in vitro and in vivo assessment. A newly isolated bacteriocin-like inhibitory substance (BLIS) producing lactic acid bacterium, Lactococcus lactis Gh1, was isolated from a traditional flavour enhancer and evaluated in vitro for its potential applications in the food industry. Results from this study showed that L. lactis was tolerant to NaCl (≤ 4.0%, w/v), phenol (≤ 0.4%, w/v), 0.3% (w/v) bile salt, and pH 3. BLIS from L. lactis showed antimicrobial activity against Listeria monocytogenes ATCC 15313 and was susceptible to 10 types of antibiotics. The absence of haemolytic activity and the presence of acid phosphatase and naphthol-AS-BI-phosphohydrolase were observed in L. lactis. L. lactis could coagulate milk and showed a negative response to amylolytic and proteolytic activities and did not secrete β-galactosidase. The antimicrobial activity of BLIS was completely abolished at 121 °C. The BLIS was conserved at 4 °C in BHI and MRS medium up to 6-4 months, respectively. BLIS activity was more stable in BHI as compared to MRS after four freeze-thaw cycles and was not affected by a wide range of pH (pH 4-8). BLIS was sensitive to proteinase k and resistant to catalase and trypsin. The antimicrobial activity was slightly reduced by acetone, ethanol, methanol, and acetonitrile at 10% (v/v) and also towards Tween-80, urea, and NaCl 1% (v/v). Results from this study have demonstrated that L. lactis has a vast potential to be applied in the food industry, such as for the preparation of starter culture, functional foods, and probiotic products.
  12. Liu S, Lu SY, Qureshi N, Enshasy HAE, Skory CD
    Probiotics Antimicrob Proteins, 2022 Dec;14(6):1170-1183.
    PMID: 35995909 DOI: 10.1007/s12602-022-09976-8
    Milk kefir fermentation has been used in households for generations. Consumption of milk kefir has been associated with various health benefits, presumably from the probiotics of yeast and bacteria that make up the kefir grains. In addition, many of the microbes are known to produce novel antimicrobial compounds that can be used for other applications. The microbes living inside kefir grains differ significantly depending on geographical location and production methods. In this study, we aimed to use metagenomic analysis of fermented milk by using three different kefir grains (kefir 1, kefir 2, and kefir 3) from different US sources. We analyzed the microbial compositions of the three milk fermentation samples. This study revealed that each sample contains unique and distinct groups of microbes, kefir 1 showed the least diversity, and kefir 3 showed the highest diversity. Kefir 3 is rich in Proteobacteria while kefir 2 is dominated by the Firmicutes. Using bacterial indicator growth analyses carried out by continuous readings from microplate-based bioreactor assays suggested that kefir 2 fermentation filtrate has higher antibacterial property. We have screened 30 purified cultures of kefir 2 sample and isolated two lactic acid bacteria strains with higher antibacterial activities; the two strains were identified as Leuconostoc mesenteroides 28-1 and Lentilactobacillus kefiri 25-2 by 16S genomic PCR with confirmed antibacterial activities of fermentation filtrate after growing under both aerobic and anaerobic conditions.
  13. Ismail MF, Lim SM, Lim FT, Ramasamy K
    PMID: 37816988 DOI: 10.1007/s12602-023-10171-6
    The susceptibility of probiotics to high temperature and low pH remains a major challenge in food industries. Numerous commercially available probiotic products were reportedly presented with lower probiotic viability than claimed. To confer health benefits to the host, it is essential that probiotic strain remains viable at optimal amount during food processing procedures, storage and passage through the gastrointestinal tract. This study addressed these issues by immobilising Lactiplantibacillus plantarum LAB12 isolated from tempeh (fermented soybean) in a polymeric matrix made up of alginate (Alg, 0.5% w/v) and denatured pea protein isolate (PPi, 1-10% w/v) using the emulsion/acidification technique. Alg supplemented with 10% PPi (Alg-PPi10) appeared to be optimally small ( 9 log CFU g-1) in simulated intestinal fluid (at pH 6.8 for 240 min). Whilst retaining their intrinsic cholesterol lowering effect, microencapsulation conferred additional advantages to L. plantarum LAB12 in terms of lowering serum triglyceride and increasing HDL cholesterol in zebrafish fed with high-cholesterol diet (HCD). Overall, our findings strongly imply the potential use of Alg-PPi10 as an effective medium that confers thermal protection and facilitates pH-sensitive release of cholesterol-reducing L. plantarum LAB12. This will allow the diverse applications L. plantarum LAB12 across health, food and agro-feed industries amongst others.
  14. Rangasamy P, Foo HL, Yusof BNM, Chew SY, Jamil AAM, Than LTL
    PMID: 37314695 DOI: 10.1007/s12602-023-10094-2
    Lactobacilli, the most common group of bacteria found in a healthy vaginal microbiota, have been demonstrated to act as a defence against colonisation and overgrowth of vaginal pathogens. These groups of bacteria have sparked interests in incorporating them as probiotics aimed at re-establishing balance within the urogenital ecosystem. In this study, the safety characteristics of Limosilactobacillus reuteri 29B (L29B) strain were evaluated through whole genome sequencing (WGS) and animal study. Cell culture assay and 16S rDNA analysis were done to evaluate the ability of the strain to colonise and adhere to the mouse vaginal tract, and RAST analysis was performed to screen for potential genes associated with probiotic trait. The histological study on the mice organs and blood analysis of the mice showed there was no incidence of inflammation. We also found no evidence of bacterial translocation. The cell culture assay on HeLa cells showed 85% of adhesion, and there was a significant reduction of Candida strain viability in displacement assay. As for the 16S rDNA analysis, there was a significant amount of L29B colonisation of the vaginal microflora. Taken together, the intravaginal administration of L29B significantly reduced the number Enterobacteriaceae and Staphylococcaceae that were present in mouse vaginal tract. It also improved and promoted a balanced vaginal microflora environment without causing any harm or irritation to mice. Limosilactobacillus 29B (L29B) is safe to be administered intravaginally.
  15. Ahire JJ, Kumar V, Rohilla A
    PMID: 37874496 DOI: 10.1007/s12602-023-10185-0
    Osteoporosis is a systemic condition of the skeleton that leads to diminished bone mass, a breakdown in the bone tissue's microscopic architecture, and an elevated risk of breaking a bone. The elderly and women particularly after menopause are disproportionately affected, and the condition generally stays undiagnosed until a broken bone causes severe pain and immobility. Causes of osteoporosis include low bone mass, more than normal bone loss, changes in hormone levels (decreased estrogen or testosterone), certain diseases and therapies, and lifestyle factors like smoking and inactivity. The spine, hip, and forearm are particularly vulnerable to osteoporosis-related fractures. The purpose of this article is to present a thorough understanding of osteoporosis, including the disease's connection to bone density in humans, and the major part played by genetic pathways and gut flora. The causes of osteoporosis, the effects of aging on bone density, and why some groups experience a higher incidence of the disease than others are investigated. The paper also includes animal and human experiments investigating the link between gut flora and osteoporosis. Finally, it looks to the future and speculates on possible developments in osteoporosis prevention and therapy.
  16. Mohd Fuad AS, Amran NA, Nasruddin NS, Burhanudin NA, Dashper S, Arzmi MH
    Probiotics Antimicrob Proteins, 2023 Oct;15(5):1298-1311.
    PMID: 36048406 DOI: 10.1007/s12602-022-09985-7
    Oral carcinogenesis is preceded by oral diseases associated with inflammation such as periodontitis and oral candidiasis, which are contributed by chronic alcoholism, smoking, poor oral hygiene, and microbial infections. Dysbiosis is an imbalance of microbial composition due to oral infection, which has been reported to contribute to oral carcinogenesis. Therefore, in this review, we summarised the role of probiotics, prebiotics, synbiotics, and postbiotics in promoting a balanced oral microbiome, which may prevent oral carcinogenesis due to oral infections. Probiotics have been shown to produce biofilm, which possesses antibacterial activity against oral pathogens. Meanwhile, prebiotics can support growth and increase the benefit of probiotics. In addition, postbiotics possess antibacterial, anticariogenic, and anticancer properties that potentially aid in oral cancer prevention and treatment. The use of probiotics, prebiotics, synbiotics, and postbiotics for oral cancer management is still limited despite their vast potential, thus, discovering their prospects could herald a novel approach to disease prevention and treatment while participating in combating antimicrobial resistance.
  17. Talib N, Mohamad NE, Yeap SK, Ho CL, Masarudin MJ, Abd-Aziz S, et al.
    PMID: 37755545 DOI: 10.1007/s12602-023-10159-2
    The prevalence of type 2 diabetes mellitus (T2DM) is alarming because it is always linked to the increase in chronic diseases, mortality, and socioeconomic burden. Water kefir has a wide range of functional and probiotic characteristics attributed to the microorganisms present in the kefir grains. The present study aims to evaluate the in vivo anti-diabetic potential of the isolated Lactobacillus paracasei from Malaysian water kefir grains (MWKG) which was reported to have excellent probiotic properties and high antioxidant activities as reported previously. High-fat diet/streptozotocin (HFD/STZ) induction was used to obtain a T2DM model followed by treatment with the isolated L. paracasei from MWKG. The levels of glucose, insulin, and in vivo liver antioxidants were quantified after 14 weeks. Gene expression analysis of the liver was also carried out using microarray analysis, and several genes were selected for validation using quantitative real-time PCR. Insulin tolerance test demonstrated that the L. paracasei isolated from the MWKG alleviated T2DM by improving the area under the curve of the insulin tolerance test whereby low-dose and high-dose concentrations treated groups showed 2424.50 ± 437.02 mmol/L·min and 2017.50 ± 347.09 mmol/L·min, respectively, compared to untreated diabetic mice which was 3884.50 ± 39.36 mmol/L·min. Additionally, treatment with the isolated L. paracasei from MWKG regulated the expression of several genes related to glucose homeostasis and lipid metabolism in diabetic mice. These results suggested that the isolated L. paracasei from MWKG could be a potential dietary supplement for T2DM.
  18. Boahen A, Chew SY, Neela VK, Than LTL
    Probiotics Antimicrob Proteins, 2023 Dec;15(6):1681-1699.
    PMID: 36881331 DOI: 10.1007/s12602-023-10050-0
    Vaginal dysbiosis advocates burgeoning of devious human vaginal pathobionts like Candida species that possess multiple virulence properties and metabolic flexibility to cause infections. Inevitably, antifungal resistance may emerge due to their innate nature (e.g., biofilm formation), which assists in their virulence as well as the formation of persister cells after dispersal. In consequence, the phenomenon of biofilm involvement in vulvovaginal candidiasis (VVC) and its recurrence is becoming paramount. Lactic acid bacteria and their derivatives have proven to be hostile to Candida species. Here, we throw more light on the potency of the derivatives, i.e., cell-free supernatant (CFS) produced by an indigenously isolated vaginal Lactobacillus strain, Limosilactobacillus reuteri 29A. In the present study, we investigated the antibiofilm and antagonistic effects of L. reuteri 29A CFS, against biofilms of Candida species and in murine model of vulvovaginal candidiasis. In our in vitro biofilm study, the CFS disrupted and inhibited preformed biofilms of C. albicans and C. glabrata. Scanning electron microscopy displayed the destruction of preformed biofilms and impediment of C. albicans morphogenesis by the CFS. Gas chromatography-mass spectrometry analysis showed multiple key compounds that may act singly or synergistically. In vivo, the CFS showed no collateral damage to uninfected mice; the integrity of infected vaginal tissues was restored by the administration of the CFS as seen from the cytological, histopathological, and electron microscopical analyses. The results of this study document the potential use of CFS as an adjuvant or prophylactic option in addressing vaginal fungal infections.
  19. Fareez IM, Lim SM, Ramasamy K
    Probiotics Antimicrob Proteins, 2024 Feb;16(1):99-112.
    PMID: 36508139 DOI: 10.1007/s12602-022-10020-y
    The pathogenesis of colorectal cancer (CRC) is associated with gut dysbiosis that is attributed to unhealthy lifestyles and dietary habits. Consumption of microencapsulated probiotics may potentially restore the gut microbiota in favour of prevention against CRC. This study determined the fate of microencapsulated Lactiplantibacillus plantarum (formerly known as Lactobacillus plantarum) LAB12 in the gastrointestinal tract (GIT) and assessed the chemopreventive effect of microencapsulated L. plantarum LAB12 in vivo. The targeted release of L. plantarum LAB12 from Alg-based microcapsules at the stomach, ileum, caecum and colon of Sprague-Dawley rats was examined by confocal microscopy and qPCR. Microcapsules loaded with L. plantarum LAB12 remained intact in the stomach. Free L. plantarum LAB12 were present in abundance (> 7 log CFU) only in the intestines. Subsequently, the chemopreventive properties of microencapsulated L. plantarum LAB12 were validated against NU/NU nude mice bearing orthotopic transplanted CT-26 CRC (12 female mice; 4-6 weeks old; 20-22 g; n = 6/group). Orthotopic mice pre-supplemented with microencapsulated L. plantarum LAB12 (10 log CFU kg-1 BW for 11 weeks) were presented with significantly (p 
  20. Zaki RM, Ramasamy K, Ahmad Alwi NA, Mohd Yusoff R, Lim SM
    Probiotics Antimicrob Proteins, 2024 Feb;16(1):62-75.
    PMID: 36443559 DOI: 10.1007/s12602-022-10009-7
    Alzheimer's disease (AD) is characterized by aggregation of amyloid beta (Aβ) plaque. RhoA may serve as a potential target for prevention against AD given its role in the amyloidogenic pathway. The recent emergence of the gut-brain axis has linked lactic acid bacteria (LAB) to neuroprotection against AD. This study assessed the importance of RhoA inhibition in mediating the neuroprotective potential of LAB. To this end, de Man, Rogosa and Sharpe (MRS) broth fermented by lactobacilli or pediococci were tested against SK-N-SH (a human neuroblastoma cell line) in the presence of RhoA activator II for 24 h after which the RhoA activity was measured using the G-LISA Kit. Fluorescence staining of f-actin stress fibres was performed to validate RhoA inhibition. SK-N-SH was transfected with plasmid expressing amyloid precursor protein (APP) gene. The Aβ concentration in transfected cells exposed to LAB-derived cell free supernatant (CFS) in the presence of RhoA activator II was measured using the ELISA kit. Furthermore, this study measured organic acids in LAB-derived CFS using the gas chromatography. It was found that LAB-derived CFS yielded strain-dependent inhibition of RhoA, with LAB6- and LAB12-derived CFS being the most potent Pediococcal- and Lactiplantibacillus-based RhoA inhibitor, respectively. Lesser stress fibres were formed under treatment with LAB-derived CFS. The LAB-derived CFS also significantly inhibited Aβ in SK-N-SH transfected with APP gene in the presence of RhoA activator II. The LAB-derived CFS was presented with increased lactic acid, acetic acid, butyric acid and propionic acid. The present findings warrant in-depth study using animal models.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links