Displaying publications 81 - 86 of 86 in total

Abstract:
Sort:
  1. Sirunyan AM, Tumasyan A, Adam W, Bergauer T, Dragicevic M, Erö J, et al.
    Eur Phys J C Part Fields, 2021;81(4):378.
    PMID: 34727142 DOI: 10.1140/epjc/s10052-021-09014-x
    The rate for Higgs ( H ) bosons production in association with either one ( t H ) or two ( t t ¯ H ) top quarks is measured in final states containing multiple electrons, muons, or tau leptons decaying to hadrons and a neutrino, using proton-proton collisions recorded at a center-of-mass energy of 13 TeV by the CMS experiment. The analyzed data correspond to an integrated luminosity of 137 fb - 1 . The analysis is aimed at events that contain H → W W , H → τ τ , or H → Z Z decays and each of the top quark(s) decays either to lepton+jets or all-jet channels. Sensitivity to signal is maximized by including ten signatures in the analysis, depending on the lepton multiplicity. The separation among t H , t t ¯ H , and the backgrounds is enhanced through machine-learning techniques and matrix-element methods. The measured production rates for the t t ¯ H and t H signals correspond to 0.92 ± 0.19 (stat) - 0.13 + 0.17 (syst) and 5.7 ± 2.7 (stat) ± 3.0 (syst) of their respective standard model (SM) expectations. The corresponding observed (expected) significance amounts to 4.7 (5.2) standard deviations for t t ¯ H , and to 1.4 (0.3) for t H production. Assuming that the Higgs boson coupling to the tau lepton is equal in strength to its expectation in the SM, the coupling y t of the Higgs boson to the top quark divided by its SM expectation, κ t = y t / y t SM , is constrained to be within - 0.9 < κ t < - 0.7 or 0.7 < κ t < 1.1 , at 95% confidence level. This result is the most sensitive measurement of the t t ¯ H production rate to date.
  2. Sirunyan AM, Tumasyan A, Adam W, Bergauer T, Dragicevic M, Erö J, et al.
    Eur Phys J C Part Fields, 2021;81(8):688.
    PMID: 34780582 DOI: 10.1140/epjc/s10052-021-09348-6
    A search is presented for a heavy vector resonance decaying into a Z boson and the standard model Higgs boson, where the Z boson is identified through its leptonic decays to electrons, muons, or neutrinos, and the Higgs boson is identified through its hadronic decays. The search is performed in a Lorentz-boosted regime and is based on data collected from 2016 to 2018 at the CERN LHC, corresponding to an integrated luminosity of 137 fb - 1 . Upper limits are derived on the production of a narrow heavy resonance Z ' , and a mass below 3.5 and 3.7 Te is excluded at 95% confidence level in models where the heavy vector boson couples predominantly to fermions and to bosons, respectively. These are the most stringent limits placed on the Heavy Vector Triplet Z ' model to date. If the heavy vector boson couples exclusively to standard model bosons, upper limits on the product of the cross section and branching fraction are set between 23 and 0.3 fb for a Z ' mass between 0.8 and 4.6 Te , respectively. This is the first limit set on a heavy vector boson coupling exclusively to standard model bosons in its production and decay.
  3. Sirunyan AM, Tumasyan A, Adam W, Andrejkovic JW, Bergauer T, Chatterjee S, et al.
    Eur Phys J C Part Fields, 2021;81(8):723.
    PMID: 34780581 DOI: 10.1140/epjc/s10052-021-09472-3
    A search for charged Higgs bosons produced in vector boson fusion processes and decaying into vector bosons, using proton-proton collisions at s = 13 TeV at the LHC, is reported. The data sample corresponds to an integrated luminosity of 137 fb - 1 collected with the CMS detector. Events are selected by requiring two or three electrons or muons, moderate missing transverse momentum, and two jets with a large rapidity separation and a large dijet mass. No excess of events with respect to the standard model background predictions is observed. Model independent upper limits at 95% confidence level are reported on the product of the cross section and branching fraction for vector boson fusion production of charged Higgs bosons as a function of mass, from 200 to 3000 GeV . The results are interpreted in the context of the Georgi-Machacek model.
  4. CMS Collaboration, Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Bergauer T, et al.
    Eur Phys J C Part Fields, 2014;74(11):3149.
    PMID: 25814876 DOI: 10.1140/epjc/s10052-014-3149-z
    A search for heavy, right-handed neutrinos, [Formula: see text] ([Formula: see text]), and right-handed [Formula: see text] bosons, which arise in the left-right symmetric extensions of the standard model, has been performed by the CMS experiment. The search was based on a sample of two lepton plus two jet events collected in proton-proton collisions at a center-of-mass energy of 8[Formula: see text] corresponding to an integrated luminosity of 19.7 [Formula: see text]. For models with strict left-right symmetry, and assuming only one [Formula: see text] flavor contributes significantly to the [Formula: see text] decay width, the region in the two-dimensional [Formula: see text] mass plane excluded at a 95 % confidence level extends to approximately [Formula: see text] and covers a large range of neutrino masses below the [Formula: see text] boson mass, depending on the value of [Formula: see text]. This search significantly extends the [Formula: see text] exclusion region beyond previous results.
  5. Hayrapetyan A, Tumasyan A, Adam W, Andrejkovic JW, Bergauer T, Chatterjee S, et al.
    Phys Rev Lett, 2024 Mar 22;132(12):121901.
    PMID: 38579207 DOI: 10.1103/PhysRevLett.132.121901
    The observation of WWγ production in proton-proton collisions at a center-of-mass energy of 13 TeV with an integrated luminosity of 138  fb^{-1} is presented. The observed (expected) significance is 5.6 (5.1) standard deviations. Events are selected by requiring exactly two leptons (one electron and one muon) of opposite charge, moderate missing transverse momentum, and a photon. The measured fiducial cross section for WWγ is 5.9±0.8(stat)±0.8(syst)±0.7(modeling)  fb, in agreement with the next-to-leading order quantum chromodynamics prediction. The analysis is extended with a search for the associated production of the Higgs boson and a photon, which is generated by a coupling of the Higgs boson to light quarks. The result is used to constrain the Higgs boson couplings to light quarks.
  6. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Brandstetter J, et al.
    PMID: 31976987 DOI: 10.1140/epjc/s10052-019-7493-x
    Two related searches for phenomena beyond the standard model (BSM) are performed using events with hadronic jets and significant transverse momentum imbalance. The results are based on a sample of proton-proton collisions at a center-of-mass energy of 13 Te , collected by the CMS experiment at the LHC in 2016-2018 and corresponding to an integrated luminosity of 137 fb - 1 . The first search is inclusive, based on signal regions defined by the hadronic energy in the event, the jet multiplicity, the number of jets identified as originating from bottom quarks, and the value of the kinematic variable M T 2 for events with at least two jets. For events with exactly one jet, the transverse momentum of the jet is used instead. The second search looks in addition for disappearing tracks produced by BSM long-lived charged particles that decay within the volume of the tracking detector. No excess event yield is observed above the predicted standard model background. This is used to constrain a range of BSM models that predict the following: the pair production of gluinos and squarks in the context of supersymmetry models conserving R-parity, with or without intermediate long-lived charginos produced in the decay chain; the resonant production of a colored scalar state decaying to a massive Dirac fermion and a quark; or the pair production of scalar and vector leptoquarks each decaying to a neutrino and a top, bottom, or light-flavor quark. In most of the cases, the results obtained are the most stringent constraints to date.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links