MATERIALS AND METHODS: Twenty-five rats were subjected to unilateral stereotaxic injection of 10 µL LPS (1 mg/mL), while another ten rats were injected with phosphate-buffered saline (PBS, 10 µL) as control. Then, 29 parameters of rat behavior related to sickness were tracked by a device software (SMART 3.0.1) on days 0 and 14 of CN treatment. The acquired and accumulated data were analyzed using multivariate data analysis with the SIMCA Software package (version 13, Umetrics AB; Umeå, Sweden). The pattern trends of related groups were documented using PCA and OPLS analysis.
RESULTS: A similar ameliorated correlation pattern was detected between improvement in physiological sickness behavior and anti-inflammatory biomarkers by the 1H NMR spectra of the sera following treatment with CN (500 and 1000 mg/kg body weight (bw)) and the control drug (dextromethorphan hydrobromide, 5 mg/kg of rats bw) in rats. Here, 21 biomarkers were detected for neuroinflammation. Treatment with the aqueous CN extract resulted in a statistically significant alteration in neuroinflammation metabolite biomarkers, including ethanol, choline, and acetate.
CONCLUSION: This result denotes that the metabolomics approach is a reliable tool to disclose the relationship between central neuroinflammation, and systemic metabolic and physiological disturbances which could be used for future ethno-pharmacological assessments.
MATERIAL AND METHODS: Mild TBI (mTBI) and repetitive mTBI (r-mTBI) were induced in male and female 2-month-old Balb/c mice via the Marmarou weight-drop model. Liver and kidney tissues were sampled at 24 hours (acute) and 30 days (chronic) post TBI and subjected to histopathological and immunoreactivity analysis.
RESULTS: Interleukin (IL)-6 levels were significantly increased in the male liver and kidney tissues in both TBI groups compared to the control group but were seen to be decreased in the female r-mTBI chronic liver and r-mTBI acute kidney. Tumor necrosis factor a (TNF-a) levels were found to increase only in the female r-mTBI chronic kidney tissue and mTBI chronic liver tissue. IL-1b levels were increased in the male and female r-mTBI liver tissues but decreased in the female mTBI kidney tissue. Inducible nitric oxide synthase (iNOS) levels were found to be significantly increased in the female mTBI acute and r-mTBI chronic kidney tissue and mTBI liver tissue, but decreased in the r-mTBI acute kidney and r-mTBI liver tissues. Beclin-1 levels were increased in male mTBI chronic and r-mTBI acute liver tissue but decreased in the r-mTBI chronic group. LC3A/B and P62/SQSTM1 levels were significantly increased in the female mTBI chronic and male r-mTBI chronic liver tissues but decreased in the male r-mTBI and female r-mTBI acute kidney tissues. Significant histopathological changes were also observed in the liver and kidney tissue which were dependent on the TBI severity, gender, and time post TBI.
CONCLUSIONS: The results showed that TBI may elicit peripheral molecular responses, particularly in terms of alteration in the levels of inflammatory cytokines and autophagy markers, which were gender- and time-dependent. This suggests that TBI may have a significant role in the cellular damage of the kidney and liver in both the acute and chronic phases post TBI, thus ensuring that the effects of TBI may not be confined to the brain.
METHODS: A 2-year retrospective cohort study was employed, in which adults with a history of admission for traumatic brain injury (TBI) in 2019 and 2020 were contacted. Three hundred one individuals agreed to participate, with a median follow-up time of 30.75 months. The development of epilepsy was ascertained using a validated tool and confirmed by our neurologists during visits. Clinical psychologists assessed the patients' cognitive performance.
RESULTS: The 2-year cumulative incidence of PTE was 9.3% (95% confidence interval [CI] 5.9-12.7). The significant predictors of PTE were identified as a previous history of brain injury [hazard ratio [HR] 4.025, p = .021], and intraparenchymal hemorrhage (HR: 2.291, p = .036), after adjusting for other confounders. TBI patients with PTE performed significantly worse on the total ACE-III cognitive test (73.5 vs 87.0, p = .018), CTMT (27.5 vs 33.0, p = .044), and PSI (74.0 vs 86.0, p = .006) than TBI patients without PTE. A significantly higher percentage of individuals in the PTE group had cognitive impairment, compared to the non-PTE group based on ACE-III (53.6% vs 46.4%, p = .001) and PSI (70% vs 31.7%, p = .005) scores at 2 years post-TBI follow-up.
SIGNIFICANCE: This study emphasizes the link between TBI and PTE and the chance of developing cognitive impairment in the future. Clinicians can target interventions to prevent PTE by identifying specific predictors, which helps them make care decisions and develop therapies to improve patients' quality of life.
METHODS: A web-based survey was sent to clinicians involved in the management of SE, across all states and at all levels of healthcare services.
RESULTS: A total of 158 responses were received from 104 health facilities, including 23 tertiary government hospitals (95.8% of all government tertiary hospitals in Malaysia), 4 (80.0%) universities, 14 (6.7%) private, 15 (11.5%) district hospitals and 21 clinics. Intravenous (IV) diazepam was available in 14 (93.3%) district and 33 (80.5%) tertiary hospitals for prehospital management. Non-IV benzodiazepine (rectal diazepam and intramuscular midazolam) was not widely available in prehospital services (75.8% and 51.5%). Intramuscular midazolam was underutilised (60.0% in district and 65.9% in tertiary hospitals). IV sodium valproate and levetiracetam were only available in 66.7% and 53.3% of the district hospitals, respectively. Electroencephalogram (EEG) services were available in only 26.7% of the district hospitals. Non-pharmacological therapies such as ketogenic diet, electroconvulsive therapy, and therapeutic hypothermia were not available in most district and tertiary hospitals for refractory and super-refractory SE.
CONCLUSIONS: We identified several gaps in the current practice of SE management, including limited availability and underutilization of non-IV midazolam in prehospital services, underutilization of non-IV midazolam and other second-line ASMs, and lack of EEG monitoring in district hospitals and limited treatment options for refractory and super-refractory SE in tertiary hospitals.