Displaying publications 81 - 86 of 86 in total

Abstract:
Sort:
  1. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Bergauer T, Dragicevic M, et al.
    Eur Phys J C Part Fields, 2014;74(10):3076.
    PMID: 25814871
    Observation of the diphoton decay mode of the recently discovered Higgs boson and measurement of some of its properties are reported. The analysis uses the entire dataset collected by the CMS experiment in proton-proton collisions during the 2011 and 2012 LHC running periods. The data samples correspond to integrated luminosities of 5.1[Formula: see text]at [Formula: see text] and 19.7[Formula: see text]at 8[Formula: see text] . A clear signal is observed in the diphoton channel at a mass close to 125[Formula: see text] with a local significance of [Formula: see text], where a significance of [Formula: see text] is expected for the standard model Higgs boson. The mass is measured to be [Formula: see text] , and the best-fit signal strength relative to the standard model prediction is [Formula: see text][Formula: see text][Formula: see text]. Additional measurements include the signal strength modifiers associated with different production mechanisms, and hypothesis tests between spin-0 and spin-2 models.
  2. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2016 01 11;76:13.
    PMID: 26855607
    A measurement is presented of differential cross sections for Higgs boson (H) production in pp collisions at [Formula: see text][Formula: see text]. The analysis exploits the [Formula: see text] decay in data corresponding to an integrated luminosity of 19.7[Formula: see text] collected by the CMS experiment at the LHC. The cross section is measured as a function of the kinematic properties of the diphoton system and of the associated jets. Results corrected for detector effects are compared with predictions at next-to-leading order and next-to-next-to-leading order in perturbative quantum chromodynamics, as well as with predictions beyond the standard model. For isolated photons with pseudorapidities [Formula: see text], and with the photon of largest and next-to-largest transverse momentum ([Formula: see text]) divided by the diphoton mass [Formula: see text] satisfying the respective conditions of [Formula: see text] and [Formula: see text], the total fiducial cross section is [Formula: see text][Formula: see text].
  3. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Bergauer T, Dragicevic M, et al.
    Eur Phys J C Part Fields, 2015 10 29;75(10):511.
    PMID: 26549982
    Measurements of the [Formula: see text][Formula: see text] production cross sections in proton-proton collisions at center-of-mass energies of 7 and 8[Formula: see text] are presented. Candidate events for the leptonic decay mode [Formula: see text], where [Formula: see text] denotes an electron or a muon, are reconstructed and selected from data corresponding to an integrated luminosity of 5.1 (19.6)[Formula: see text] at 7 (8)[Formula: see text] collected with the CMS experiment. The measured cross sections, [Formula: see text] at 7[Formula: see text], and [Formula: see text] at 8[Formula: see text], are in good agreement with the standard model predictions with next-to-leading-order accuracy. The selected data are analyzed to search for anomalous triple gauge couplings involving the [Formula: see text][Formula: see text] final state. In the absence of any deviation from the standard model predictions, limits are set on the relevant parameters. These limits are then combined with the previously published CMS results for [Formula: see text][Formula: see text] in 4[Formula: see text] final states, yielding the most stringent constraints on the anomalous couplings.
  4. Aad G, Abbott B, Abeling K, Abicht NJ, Abidi SH, Aboulhorma A, et al.
    Phys Rev Lett, 2024 Jan 12;132(2):021803.
    PMID: 38277607 DOI: 10.1103/PhysRevLett.132.021803
    The first evidence for the Higgs boson decay to a Z boson and a photon is presented, with a statistical significance of 3.4 standard deviations. The result is derived from a combined analysis of the searches performed by the ATLAS and CMS Collaborations with proton-proton collision datasets collected at the CERN Large Hadron Collider (LHC) from 2015 to 2018. These correspond to integrated luminosities of around 140  fb^{-1} for each experiment, at a center-of-mass energy of 13 TeV. The measured signal yield is 2.2±0.7 times the standard model prediction, and agrees with the theoretical expectation within 1.9 standard deviations.
  5. Hayrapetyan A, Tumasyan A, Adam W, Andrejkovic JW, Bergauer T, Chatterjee S, et al.
    Phys Rev Lett, 2024 Jun 28;132(26):261902.
    PMID: 38996325 DOI: 10.1103/PhysRevLett.132.261902
    A combination of fifteen top quark mass measurements performed by the ATLAS and CMS experiments at the LHC is presented. The datasets used correspond to an integrated luminosity of up to 5 and 20  fb^{-1} of proton-proton collisions at center-of-mass energies of 7 and 8 TeV, respectively. The combination includes measurements in top quark pair events that exploit both the semileptonic and hadronic decays of the top quark, and a measurement using events enriched in single top quark production via the electroweak t channel. The combination accounts for the correlations between measurements and achieves an improvement in the total uncertainty of 31% relative to the most precise input measurement. The result is m_{t}=172.52±0.14(stat)±0.30(syst)  GeV, with a total uncertainty of 0.33 GeV.
  6. Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, et al.
    Autophagy, 2021 Jan;17(1):1-382.
    PMID: 33634751 DOI: 10.1080/15548627.2020.1797280
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links