Displaying publications 81 - 100 of 220 in total

Abstract:
Sort:
  1. Lee SM, Lo KM, Tan SL, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2016 Oct 1;72(Pt 10):1390-1395.
    PMID: 27746926
    The Yb(III) atom in the title complex, [Yb(C27H24Cl3N4O3)] [systematic name: (2,2',2''-{(nitrilo)-tris-[ethane-2,1-di-yl(nitrilo)-methylyl-idene]}tris-(4-chloro-phenolato)ytterbium(III)], is coordinated by a trinegative, hepta-dentate ligand and exists within an N4O3 donor set, which defines a capped octa-hedral geometry whereby the amine N atom caps the triangular face defined by the three imine N atoms. The packing features supra-molecular layers that stack along the a axis, sustained by a combination of aryl-C-H⋯O, imine-C-H⋯O, methyl-ene-C-H⋯π(ar-yl) and end-on C-Cl⋯π(ar-yl) inter-actions. A Hirshfeld surface analysis points to the major contributions of C⋯H/ H⋯C and Cl⋯H/H⋯Cl inter-actions (along with H⋯H) to the overall surface but the Cl⋯H contacts are at distances greater than the sum of their van der Waals radii.
  2. Yeo CI, Tan SL, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2016 Oct 1;72(Pt 10):1446-1452.
    PMID: 27746938
    The title compound, [Au(C9H10NOS)(C18H15P)], features a near linear P-Au-S arrangement defined by phosphane P and thiol-ate S atoms with the minor distortion from the ideal [P-Au-S is 177.61 (2)°] being traced in part to the close intra-molecular approach of an O atom [Au⋯O = 3.040 (2) Å]. The packing features supra-molecular layers lying parallel to (011) sustained by a combination of C-H⋯π and π-π [inter-centroid distance = 3.8033 (17) Å] inter-actions. The mol-ecular structure and packing are compared with those determined for a previously reported hemi-methanol solvate [Kuan et al. (2008 ▸). CrystEngComm, 10, 548-564]. Relatively minor differences are noted in the conformations of the rings in the Au-containing mol-ecules. A Hirshfeld surface analysis confirms the similarity in the packing with the most notable differences relating to the formation of C-H⋯S contacts between the constituents of the solvate.
  3. Mohamad R, Awang N, Kamaludin NF, Jotani MM, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2016 Oct 1;72(Pt 10):1480-1487.
    PMID: 27746946
    The crystal and mol-ecular structures of two tri-phenyl-tin di-thio-carbamates, [Sn(C6H5)3(C16H16NS2)], (I), and [Sn(C6H5)3(C7H14NO2S2)], (II), are described. In (I), the di-thio-carbamate ligand coordinates the Sn(IV) atom in an asymmetric manner, leading to a highly distorted trigonal-bipyramidal coordination geometry defined by a C3S2 donor set with the weakly bound S atom approximately trans to one of the ipso-C atoms. A similar structure is found in (II), but the di-thio-carbamate ligand coordinates in an even more asymmetric fashion. The packing in (I) features supra-molecular chains along the c axis sustained by C-H⋯π inter-actions; chains pack with no directional inter-actions between them. In (II), supra-molecular layers are formed, similarly sustained by C-H⋯π inter-actions; these stack along the b axis. An analysis of the Hirshfeld surfaces for (I) and (II) confirms the presence of the C-H⋯π inter-actions but also reveals the overall dominance of H⋯H contacts in the respective crystals.
  4. Tan SL, Yeo CI, Heard PJ, Akien GR, Halcovitch NR, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2016 Dec 01;72(Pt 12):1799-1805.
    PMID: 27980834
    The title compound, [Cu(C5H5NO2S2)(C18H15P)2]·CHCl3, features a tetra-hedrally coordinated CuI atom within a P2S2 donor set defined by two phosphane P atoms and by two S atoms derived from a symmetrically coordinating di-thio-carbamate ligand. Both intra- and inter-molecular hy-droxy-O-H⋯O(hydroxy) hydrogen bonding is observed: the former closes an eight-membered {⋯HOC2NC2O} ring, whereas the latter connects centrosymmetrically related mol-ecules into dimeric aggregates via eight-membered {⋯H-O⋯H-O}2 synthons. The complex mol-ecules are arranged to form channels along the c axis in which reside the chloro-form mol-ecules, being connected by Cl⋯π(arene) and short S⋯Cl [3.3488 (9) Å] inter-actions. The inter-molecular inter-actions have been investigated further by Hirshfeld surface analysis, which shows the conventional hydrogen bonding to be very localized with the main contributors to the surface, at nearly 60%, being H⋯H contacts. Solution NMR studies indicate that whilst the same basic mol-ecular structure is retained in solution, the tri-phenyl-phosphane ligands are highly labile, exchanging rapidly with free Ph3P at room temperature.
  5. Wardell JL, Jotani MM, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2016 Dec 01;72(Pt 12):1691-1699.
    PMID: 27980811
    The crystal structures of two ammonium salts of 2-amino-4-nitro-benzoic acid are described, namely di-methyl-aza-nium 2-amino-4-nitro-benzoate, C2H8N+·C7H5N2O4-, (I), and di-butyl-aza-nium 2-amino-4-nitro-benzoate, C8H20N+·C7H5N2O4-, (II). The asymmetric unit of (I) comprises a single cation and a single anion. In the anion, small twists are noted for the carboxyl-ate and nitro groups from the ring to which they are connected, as indicated by the dihedral angles of 11.45 (13) and 3.71 (15)°, respectively; the dihedral angle between the substituents is 7.9 (2)°. The asymmetric unit of (II) comprises two independent pairs of cations and anions. In the cations, different conformations are noted in the side chains in that three chains have an all-trans [(+)-anti-periplanar] conformation, while one has a distinctive kink resulting in a (+)-synclinal conformation. The anions, again, exhibit twists with the dihedral angles between the carboxyl-ate and nitro groups and the ring being 12.73 (6) and 4.30 (10)°, respectively, for the first anion and 8.1 (4) and 12.6 (3)°, respectively, for the second. The difference between anions in (I) and (II) is that in the anions of (II), the terminal groups are conrotatory, forming dihedral angles of 17.02 (8) and 19.0 (5)°, respectively. In each independent anion of (I) and (II), an intra-molecular amino-N-H⋯O(carboxyl-ate) hydrogen bond is formed. In the crystal of (I), anions are linked into a jagged supra-molecular chain by charge-assisted amine-N-H⋯O(carboxyl-ate) hydrogen bonds and these are connected into layers via charge-assisted ammonium-N-H⋯O(carboxyl-ate) hydrogen bonds. The resulting layers stack along the a axis, being connected by nitro-N-O⋯π(arene) and methyl-C-H⋯O(nitro) inter-actions. In the crystal of (II), the anions are connected into four-ion aggregates by charge-assisted amino-N-H⋯O(carboxyl-ate) hydrogen bonding. The formation of ammonium-N-H⋯O(carboxyl-ate) hydrogen bonds, involving all ammonium-N-H and carboxyl-ate O atoms leads to a three-dimensional architecture; additional C-H⋯O(nitro) inter-actions contribute to the packing. The Hirshfeld surface analysis confirms the importance of the hydrogen bonding in both crystal structures. Indeed, O⋯H/H⋯O inter-actions contribute nearly 50% to the entire Hirshfeld surface in (I).
  6. Jotani MM, Arman HD, Poplaukhin P, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2016 Dec 01;72(Pt 12):1700-1709.
    PMID: 27980812
    The common feature of the mol-ecular structures of the title compounds, [Zn(C5H10NS2)2(C5H5NO)], (I), and [Zn(C4H8NOS2)2(C5H5NO)], (II), are NS4 donor sets derived from N-bound hy-droxy-pyridyl ligands and asymmetrically chelating di-thio-carbamate ligands. The resulting coordination geometries are highly distorted, being inter-mediate between square pyramidal and trigonal bipyramidal for both independent mol-ecules comprising the asymmetric unit of (I), and significantly closer towards square pyramidal in (II). The key feature of the mol-ecular packing in (I) is the formation of centrosymmetric, dimeric aggregates sustained by pairs of hy-droxy-O-H⋯S(di-thio-carbamate) hydrogen bonds. The aggregates are connected into a three-dimensional architecture by methyl-ene-C-H⋯O(hy-droxy) and methyl-C-H⋯π(chelate) inter-actions. With greater hydrogen-bonding potential, supra-molecular chains along the c axis are formed in the crystal of (II), sustained by hy-droxy-O-H⋯O(hy-droxy) hydrogen bonds, with ethyl-hydroxy and pyridyl-hydroxy groups as the donors, along with ethyl-hydroxy-O-H⋯S(di-thio-carbamate) hydrogen bonds. Chains are connected into layers in the ac plane by methyl-ene-C-H⋯π(chelate) inter-actions and these stack along the b axis, with no directional inter-actions between them. An analysis of the Hirshfeld surfaces clearly distinguished the independent mol-ecules of (I) and reveals the importance of the C-H⋯π(chelate) inter-actions in the packing of both (I) and (II).
  7. Mohamad R, Awang N, Kamaludin NF, Jotani MM, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2017 Feb 01;73(Pt 2):260-265.
    PMID: 28217355 DOI: 10.1107/S2056989017001098
    The complete mol-ecule of the title compound, [Sn(C4H9)2(C5H10NOS2)2], is generated by a crystallographic mirror plane, with the SnIV atom and the two inner methyl-ene C atoms of the butyl ligands lying on the mirror plane; statistical disorder is noted in the two terminal ethyl groups, which deviate from mirror symmetry. The di-thio-carbamate ligand coordinates to the metal atom in an asymmetric mode with the resulting C2S4 donor set defining a skew trapezoidal bipyramidal geometry; the n-butyl groups are disposed to lie over the longer Sn-S bonds. Supra-molecular chains aligned along the a-axis direction and sustained by methyl-ene-C-H⋯S(weakly coordinating) inter-actions feature in the mol-ecular packing. A Hirshfeld surface analysis reveals the dominance of H⋯H contacts in the crystal.
  8. Tan SL, Lee SM, Heard PJ, Halcovitch NR, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2017 Feb 01;73(Pt 2):213-218.
    PMID: 28217345 DOI: 10.1107/S2056989017000755
    The title compound, [Re(C3H6NS2)(C2H3N)(CO)3], features an octa-hedrally coordinated Re(I) atom within a C3NS2 donor set defined by three carbonyl ligands in a facial arrangement, an aceto-nitrile N atom and two S atoms derived from a symmetrically coordinating di-thio-carbamate ligand. In the crystal, di-thio-carbamate-methyl-H⋯O(carbon-yl) inter-actions lead to supra-molecular chains along [36-1]; both di-thio-carbamate S atoms participate in intra-molecular methyl-H⋯S inter-actions. Further but weaker aceto-nitrile-C-H⋯O(carbonyl) inter-actions assemble mol-ecules in the ab plane. The nature of the supra-molecular assembly was also probed by a Hirshfeld surface analysis. Despite their weak nature, the C-H⋯O contacts are predominant on the Hirshfeld surface and, indeed, on those of related [Re(CO)3(C3H6NS2)L] structures.
  9. Suwardi SA, Lee SM, Lo KM, Jotani MM, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2017 Mar 01;73(Pt 3):429-433.
    PMID: 28316825 DOI: 10.1107/S2056989017002705
    The title compound, [Cd2(C8H8NS2)4], is a centrosymmetric dimer with both chelating and μ2-tridentate di-thio-carbamate ligands. The resulting S5 donor set defines a Cd(II) coordination geometry inter-mediate between square-pyramidal and trigonal-bipyramidal, but tending towards the former. The packing features C-H⋯S and C-H⋯π inter-actions, which generate a three-dimensional network. The influence of these inter-actions, along with intra-dimer π-π inter-actions between chelate rings, has been investigated by an analysis of the Hirshfeld surface.
  10. Rosely SN, Hussen RS, Lee SM, Halcovitch NR, Jotani MM, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2017 Mar 01;73(Pt 3):390-396.
    PMID: 28316817 DOI: 10.1107/S2056989017002365
    The title diorganotin compound, [Sn(CH3)2(C28H32N2O4)], features a distorted SnC2NO2 coordination geometry almost inter-mediate between ideal trigonal-bipyramidal and square-pyramidal. The dianionic Schiff base ligand coordinates in a tridentate fashion via two alkoxide O and hydrazinyl N atoms; an intra-molecular hy-droxy-O-H⋯N(hydrazin-yl) hydrogen bond is noted. The alk-oxy chain has an all-trans conformation, and to the first approximation, the mol-ecule has local mirror symmetry relating the two Sn-bound methyl groups. Supra-molecular layers sustained by imine-C-H⋯O(hy-droxy), π-π [between dec-yloxy-substituted benzene rings with an inter-centroid separation of 3.7724 (13) Å], C-H⋯π(arene) and C-H⋯π(chelate ring) inter-actions are formed in the crystal; layers stack along the c axis with no directional inter-actions between them. The presence of C-H⋯π(chelate ring) inter-actions in the crystal is clearly evident from an analysis of the calculated Hirshfeld surface.
  11. Yusof EN, Ravoof TB, Tahir MI, Jotani MM, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2017 Mar 01;73(Pt 3):397-402.
    PMID: 28316818 DOI: 10.1107/S2056989017002419
    The complete mol-ecule of the title hydrazine carbodi-thio-ate complex, [Ni(C19H21N2S2)2], is generated by the application of a centre of inversion. The NiII atom is N,S-chelated by two hydrazinecarbodi-thio-ate ligands, which provide a trans-N2S2 donor set that defines a distorted square-planar geometry. The conformation of the five-membered chelate ring is an envelope with the NiII atom being the flap atom. In the crystal, p-tolyl-C-H⋯π(benzene- i Pr), i Pr-C-H⋯π(p-tol-yl) and π-π inter-actions [between p-tolyl rings with inter-centroid distance = 3.8051 (12) Å] help to consolidate the three-dimensional architecture. The analysis of the Hirshfeld surface confirms the importance of H-atom contacts in establishing the packing.
  12. Lee SM, Halcovitch NR, Jotani MM, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2017 Apr 01;73(Pt 4):630-636.
    PMID: 28435737 DOI: 10.1107/S2056989017004790
    In the title isonicotinohydrazide hydrate, C14H12BrN3O2·H2O {systematic name: N'-[(1E)-1-(5-bromo-2-hy-droxy-phen-yl)ethyl-idene]pyridine-4-carbohydrazide monohydrate}, the central CN2O region of the organic mol-ecule is planar and the conformation about the imine-C=N bond is E. While an intra-molecular hy-droxy-O-H⋯N(imine) hydrogen bond is evident, the dihedral angle between the central residue and the benzene rings is 48.99 (9)°. Overall, the mol-ecule is twisted, as seen in the dihedral angle of 71.79 (6)° between the outer rings. In the crystal, hydrogen-bonding inter-actions, i.e. hydrazide-N-H⋯O(water), water-O-H⋯O(carbon-yl) and water-O-H⋯N(pyrid-yl), lead to supra-molecular ribbons along the a-axis direction. Connections between these, leading to a three-dimensional architecture, are mediated by Br⋯Br halogen bonding [3.5366 (3) Å], pyridyl-C-H⋯O(carbon-yl) as well as weak π-π inter-actions [inter-centroid separation between benzene rings = 3.9315 (12) Å]. The Hirshfeld surface analysis reveals the importance of hydrogen atoms in the supra-molecular connectivity as well as the influence of the Br⋯Br halogen bonding.
  13. Wardell JL, Jotani MM, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2017 Apr 01;73(Pt 4):579-585.
    PMID: 28435725 DOI: 10.1107/S2056989017004352
    In the anion of the title salt hydrate, H5N2(+)·C7H5N2O4(-)·2H2O, the carboxyl-ate and nitro groups lie out of the plane of the benzene ring to which they are bound [dihedral angles = 18.80 (10) and 8.04 (9)°, respectively], and as these groups are conrotatory, the dihedral angle between them is 26.73 (15)°. An intra-molecular amino-N-H⋯O(carboxyl-ate) hydrogen bond is noted. The main feature of the crystal packing is the formation of a supra-molecular chain along the b axis, with a zigzag topology, sustained by charge-assisted water-O-H⋯O(carboxyl-ate) hydrogen bonds and comprising alternating twelve-membered {⋯OCO⋯HOH}2 and eight-membered {⋯O⋯HOH}2 synthons. Each ammonium-N-H atom forms a charge-assisted hydrogen bond to a water mol-ecule and, in addition, one of these forms a hydrogen bond with a nitro-O atom. The amine-N-H atoms form hydrogen bonds to carboxyl-ate-O and water-O atoms, and the amine N atom accepts a hydrogen bond from an amino-H atom. The hydrogen bonds lead to a three-dimensional architecture. An analysis of the Hirshfeld surface highlights the major contribution of O⋯H/H⋯O hydrogen bonding to the overall surface, i.e. 46.8%, compared with H⋯H contacts (32.4%).
  14. Zukerman-Schpector J, Cunha R, Omori ÁT, Sousa Madureira L, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2017 Apr 01;73(Pt 4):564-568.
    PMID: 28435722 DOI: 10.1107/S2056989017003887
    Two independent mol-ecules comprise the asymmetric unit in the title benzoxatellurole compound, C12H17ClOTe. The mol-ecules, with the same chirality at the methine C atom, are connected into a loosely associated dimer by Te⋯O inter-actions, leading to a {⋯Te-O}2 core. The resultant C2ClO2 donor set approximates a square pyramid with the lone pair of electrons projected to occupy a position trans to the n-butyl substituent. Inter-estingly, the Te(IV) atoms exhibit opposite chirality. The major difference between the independent mol-ecules relates to the conformation of the five-membered chelate rings, which is an envelope with the O atom being the flap, in one mol-ecule and is twisted about the O-C(methine) bond in the other. No directional inter-molecular inter-actions are noted in the mol-ecular packing beyond the aforementioned Te⋯O secondary bonding. The analysis of the Hirshfeld surface reveals the dominance of H⋯H contacts, i.e. contributing about 70% to the overall surface, and clearly differentiates the immediate crystalline environments of the two independent mol-ecules in terms of both H⋯H and H⋯Cl/Cl⋯H contacts.
  15. Yusof ENM, Tahir MIM, Ravoof TBSA, Tan SL, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2017 Apr 01;73(Pt 4):543-549.
    PMID: 28435717 DOI: 10.1107/S2056989017003991
    The title di-thio-carbazate ester (I), C18H18N2S2 [systematic name: (E)-4-methyl-benzyl 2-[(E)-3-phenyl-allyl-idene]hydrazinecarbodi-thio-ate, comprises an almost planar central CN2S2 residue [r.m.s. deviation = 0.0131 Å]. The methyl-ene(tolyl-4) group forms a dihedral angle of 72.25 (4)° with the best plane through the remaining non-hydrogen atoms [r.m.s. deviation = 0.0586 Å] so the mol-ecule approximates mirror symmetry with the 4-tolyl group bis-ected by the plane. The configuration about both double bonds in the N-N=C-C=C chain is E; the chain has an all trans conformation. In the crystal, eight-membered centrosymmetric thio-amide synthons, {⋯HNCS}2, are formed via N-H⋯S(thione) hydrogen bonds. Connections between the dimers via C-H⋯π inter-actions lead to a three-dimensional architecture. A Hirshfeld surface analysis shows that (I) possesses an inter-action profile similar to that of a closely related analogue with an S-bound benzyl substituent, (II). Computational chemistry indicates the dimeric species of (II) connected via N-H⋯S hydrogen bonds is about 0.94 kcal mol(-1) more stable than that in (I).
  16. Tan YJ, Yeo CI, Halcovitch NR, Jotani MM, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2017 Apr 01;73(Pt 4):493-499.
    PMID: 28435705 DOI: 10.1107/S205698901700353X
    The title compound, (C6H11)3PS (systematic name: tri-cyclo-hexyl-λ(5)-phosphane-thione), is a triclinic (P-1, Z' = 1) polymorph of the previously reported ortho-rhom-bic form (Pnma, Z' = 1/2) [Kerr et al. (1977 ▸). Can. J. Chem. 55, 3081-3085; Reibenspies et al. (1996 ▸). Z. Kristallogr. 211, 400]. While conformational differences exist between the non-symmetric mol-ecule in the triclinic polymorph, cf. the mirror-symmetric mol-ecule in the ortho-rhom-bic form, these differences are not chemically significant. The major feature of the mol-ecular packing in the triclinic polymorph is the formation of linear chains along the a axis sustained by methine-C-H⋯S(thione) inter-actions. The chains pack with no directional inter-actions between them. The analysis of the Hirshfeld surface for both polymorphs indicates a high degree of similarity, being dominated by H⋯H (ca 90%) and S⋯H/H⋯S contacts.
  17. Arman HD, Poplaukhin P, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2017 Apr 01;73(Pt 4):488-492.
    PMID: 28435704 DOI: 10.1107/S2056989017003516
    The title compound, {[Cd(C9H11N2S2)2]·C6H7N} n , features two μ2-κ3-di-thio-carbamate ligands each of which chelates one CdII atom, via the S atoms, while simultaneously bridging to another via the pyridyl-N atom. The result is a two-dimensional coordination polymer extending parallel to the ab plane with square channels along the b axis. The CdII atom geometry is based on a distorted cis-N2S4 octa-hedron. The 3-methyl-pyridine mol-ecules reside in the channels aligned along the b axis, being held in place by methyl-ene-C-H⋯N(3-methyl-pyridine) and (3-methyl-pyridine)-C-H⋯π(pyrid-yl) inter-actions. Pyridyl-C-H⋯S and di-thio-carbamate-methyl-C-H⋯π(pyrid-yl) inter-actions provide connections between layers along the c axis.
  18. Amin NABM, Hussen RSD, Lee SM, Halcovitch NR, Jotani MM, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2017 May 01;73(Pt 5):667-672.
    PMID: 28529772 DOI: 10.1107/S2056989017005072
    The Sn(IV) atom in the title diorganotin compound, [Sn(C7H6F)2Cl2(C2H6OS)2], is located on a centre of inversion, resulting in the C2Cl2O2 donor set having an all-trans disposition of like atoms. The coordination geometry approximates an octa-hedron. The crystal features C-H⋯F, C-H⋯Cl and C-H⋯π inter-actions, giving rise to a three-dimensional network. The respective influences of the Cl⋯H/H⋯Cl and F⋯H/H⋯F contacts to the mol-ecular packing are clearly evident from the analysis of the Hirshfeld surface.
  19. Tonin MDL, Garden SJ, Jotani MM, Wardell SMSV, Wardell JL, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2017 May 01;73(Pt 5):738-745.
    PMID: 28529788 DOI: 10.1107/S2056989017005667
    The asymmetric unit of the title co-crystal, C10H5BrO2·C14H8O4 [systematic name: 2-bromo-1,4-di-hydro-naphthalene-1,4-dione-1,8-dihy-droxy-9,10-di-hydro-anthracene-9,10-dione (1/1)], features one mol-ecule of each coformer. The 2-bromo-naphtho-quinone mol-ecule is almost planar [r.m.s deviation of the 13 non-H atoms = 0.060 Å, with the maximum deviations of 0.093 (1) and 0.099 (1) Å being for the Br atom and a carbonyl-O atom, respectively]. The 1,8-di-hydroxy-anthra-quinone mol-ecule is planar (r.m.s. deviation for the 18 non-H atoms is 0.022 Å) and features two intra-molecular hy-droxy-O-H⋯O(carbon-yl) hydrogen bonds. Dimeric aggregates of 1,8-di-hydroxy-anthra-quinone mol-ecules assemble through weak inter-molecular hy-droxy-O-H⋯O(carbon-yl) hydrogen bonds. The mol-ecular packing comprises stacks of mol-ecules of 2-bromo-naphtho-quinone and dimeric assembles of 1,8-di-hydroxy-anthra-quinone with the shortest π-π contact within a stack of 3.5760 (9) Å occurring between the different rings of 2-bromo-naphtho-quinone mol-ecules. The analysis of the Hirshfeld surface reveals the importance of the inter-actions just indicated but, also the contribution of additional C-H⋯O contacts as well as C=O⋯π inter-actions to the mol-ecular packing.
  20. Zukerman-Schpector J, Moro AV, Dos Santos MR, Correia CRD, Jotani MM, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2017 May 01;73(Pt 5):746-751.
    PMID: 28529789 DOI: 10.1107/S2056989017005680
    The title isoaltholactone derivative, C13H13NO3, has an NH group in place of the ether-O atom in the five-membered ring of the natural product. The five-membered ring is twisted about the N-C bond linking it to the six-membered ring, which has a half-chair conformation with the O atom connected to the ether-O atom lying above the plane defined by the remaining atoms. The dihedral angle between the mean planes of the rings comprising the fused-ring system is 75.10 (8)°. In the crystal, hy-droxy-O-H⋯N(amine) hydrogen bonding sustains linear supra-molecular chains along the a axis. Chains are linked into a three-dimensional architecture via amine-N-H⋯π(phen-yl) and phenyl-C-H⋯O(hy-droxy) inter-actions. The influence of the amine-N-H⋯π(phen-yl) contact on the mol-ecular packing is revealed by an analysis of the Hirshfeld surface.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links